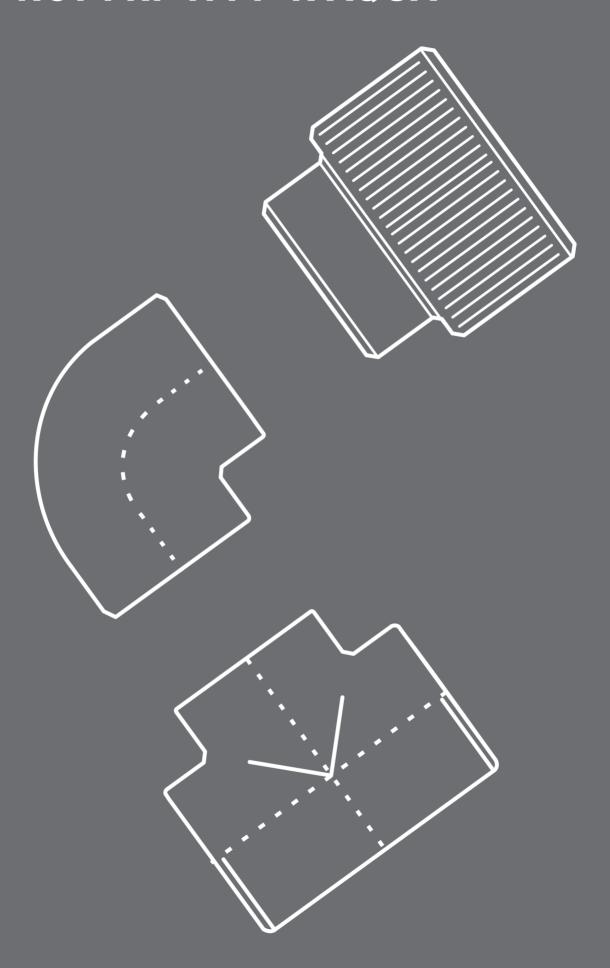


# **ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ** ДЛЯ СИСТЕМ ОТОПЛЕНИЯ И ВОДОСНАБЖЕНИЯ




# СОДЕРЖАНИЕ

| СИСТЕМА ТРУБ И ФИТИНГОВ PP-RCT FRP И PP-R AQUA                                                                                                                                             |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1. ОПИСАНИЕ СИСТЕМЫ 2. КОНТРОЛЬ КАЧЕСТВА 3. ТЕХНОЛОГИЯ МОНТАЖА 4. СПОСОБЫ УСТАНОВКИ ТРУБОПРОВОДОВ 5. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ 6. НОМЕНКЛАТУРА                                                 | 14<br>23       |
| СИСТЕМА ТРУБ ИЗ СШИТОГОПОЛИЭТИЛЕНА РЕ-Х                                                                                                                                                    |                |
| 1. ТРУБЫ ИЗ СШИТОГО ПОЛИЭТИЛЕНА РЕ-Х РОСТЕРМ 2. СИСТЕМА РОСТЕРМ «ТЕПЛЫЙ ПОЛ» ИЗ СШИТОГО ПОЛИЭТИЛЕНА 3. НОМЕНКЛАТУРА «ТЕПЛЫЙ ПОЛ» 4. СИСТЕМА РОСТЕРМ РЕ-Х С EVOH ДЛЯ РАДИАТОРНОГО ОТОПЛЕНИЯ | 42<br>43<br>49 |
| И ВОДОСНАБЖЕНИЯ  5. НОМЕНКЛАТУРА                                                                                                                                                           | 49<br>54       |
| СИСТЕМА ТРУБ ИЗ ТЕРМОСТОЙКОГО ПОЛИЭТИЛЕНА РЕ-                                                                                                                                              | <b>?T</b>      |
| 1. СИСТЕМА ТРУБ ИЗ ТЕРМОСТОЙКОГО ПОЛИЭТИЛЕНА PE-RT<br>2. НОМЕНКЛАТУРА                                                                                                                      | 58<br>60       |
| АКСЕССУАРЫ СОБСТВЕННОГО ПРОИЗВОДСТВА ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ                                                                                                                              |                |
| 1. НОМЕНКЛАТУРА                                                                                                                                                                            | 62             |
| СИСТЕМЫ ТРУБ И ФИТИНГОВ ДЛЯ ВОДООТВЕДЕНИЯ И КАНАЛИЗАЦИИ                                                                                                                                    |                |
| 1. ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ И ОПИСАНИЕ СИСТЕМЫ ВКПП<br>2. ВНУТРЕННЯЯ КАНАЛИЗАЦИЯ — ТРУБЫ И ФАСОННЫЕ ЧАСТИ<br>3. ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ И ОПИСАНИЕ СИСТЕМЫ SML<br>4. ОБЗОР ПРОДУКЦИИ          | 67             |
| ЗАПОРНАЯ АРМАТУРА ШАРОВЫЕ КРАНЫ                                                                                                                                                            |                |
| 1. ЗАПОРНАЯ АРМАТУРА, ШАРОВЫЕ КРАНЫ                                                                                                                                                        | 81<br>81       |

## СТАЛЬНЫЕ ПАНЕЛЬНЫЕ РАДИАТОРЫ

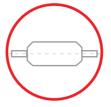
| 1. ХАРАКТЕРИСТИКА СТАЛЬНЫХ ПАНЕЛЬНЫХ РАДИАТОРОВ РОСТЕРМ |     |
|---------------------------------------------------------|-----|
| 2. ОБЗОР МОДЕЛЕЙ РАДИАТОРОВ РОСТЕРМ                     | 88  |
| 3. НОМЕНКЛАТУРА                                         | 91  |
| TERMOOTATIALIE OLIVIE EO EO DIVIA                       |     |
| ТЕРМОСТАТИЧЕСКИЕ ГОЛОВКИ                                |     |
| 1. ТЕРМОСТАТИЧЕСКИЕ ГОЛОВКИ РОСТЕРМ                     | 98  |
| VODDEVTORUUE VODU                                       |     |
| КОЛЛЕКТОРНЫЕ УЗЛЫ                                       |     |
| 1. КОЛЛЕКТОРНЫЕ УЗЛЫ                                    | 101 |
| 2. ЧЕРТЕЖИ ТИПОВЫХ КВАРТИРНЫХ СТАНЦИЙ РОСТЕРМ           | 109 |
| 3. НОМЕНКЛАТУРА                                         | 111 |
| О КОМПАНИИ РОСТЕРМ                                      | 112 |

## СИСТЕМА ТРУБ И ФИТИНГОВ PP-RCT FRP И PP-R AQUA



## 1. ОПИСАНИЕ СИСТЕМЫ

#### 1.1. Область применения системы РОСТерм из PP-RCT и PP-R


Уникальные особенности используемого сырья для производства труб и фасонных изделий открывают широкие возможности в применении системы РОСТерм:



В системах холодного и горячего водоснабжения



В системах фильтрации, водоочистки и обеспечения питьевым водоснабжением



В пневматических системах



В системах отопления, для подключения отопительных приборов различного вида



В трубопроводных системах для сельскохозяйственных нужд



В трубопроводах промышленного назначения



В трубопроводах пищевой и химической промышленности

#### 1.2. POCTepм PP-RCT FRP

РР-RCT-трубы (далее PP-RCT FRP в соответствии с принятым обозначением производителя — РОСТерм) — это трубы, изготавливаемые из термостабилизированного полипропилена (тип 4). Данный полимерный материал более устойчив к воздействию высоких температур и давления по сравнению с обычным PP-R (полипропилен рандом сополимер, тип 3). Материал PP-RCT в диапазоне температур от 20 до 110 °C характеризуется более высокими значениями максимального эксплуатационного давления. Кроме того, данный материал обладает лучшей морозостойкостью относительно обычного PP-R. Это означает, что система, выполненная из данного материала, будет более долговечной, чем система из стандартного полипропилена рандом сополимера и при высоких температурах будет служить на 25-30% дольше, например, в системах питьевого горячего водоснабжения и отопления. Система PP-RCT из термостабилизированного полипропилена более устойчива не только к высоким или низким температурам, но также к перепадам температур. Для сравнения предлагаем номограммы прочности материалов PP-RCT и PP-R, взятые из ГОСТ 32415-2013:

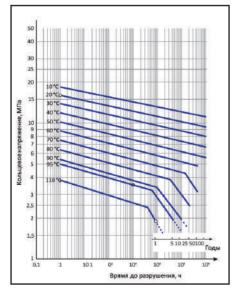



Рис. 1. Эталонные графики длительной прочности PP-R

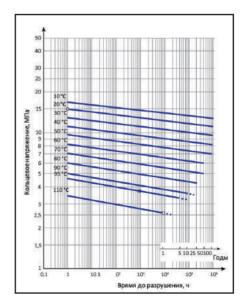
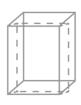
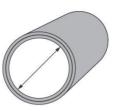



Рис. 2. Эталонные графики длительной прочности PP-RCT

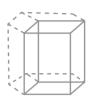

Трубы из термостабилизированного полипропилена предназначены для применения в системах холодного и горячего питьевого водоснабжения, низко- и высокотемпературного отопления, а также холодоснабжения.

Высокая термостабильность материала PP-RCT достигается благодаря модифицированной кристаллической решетке — шестигранной, имеющей дополнительные молекулярные связи, что дает возможность материалу PP-RCT сохранять свою прочность под воздействием постоянного давления и высокой температуры в течение всего срока эксплуатации.

#### Стандартная труба PP-R, армированная алюминием






Моносимметричная кристаллическая решетка

## Труба FRP POCTерм из PP-RCT, армированная стекловолокном







Шестигранная кристаллическая решетка

#### 1.3. РОСТерм Aqua

Внутренний и внешний слои труб РОСТерм Aqua изготовлены из полипропилена PP-R, средний слой представляет собой смесь полипропилена и стекловолокна, которая образует стеклонаполненный компаунд.

Трубы РОСТерм Aqua из полипропилена — двухкомпозитные, армированные стекловолокном, предназначены для холодного, горячего водоснабжения и отопления, изготовлены в соответствии с ГОСТ Р 53630-2015. Полипропилен рандом сополимер обладает высокой прочностью, гибкостью, химической и тепловой стойкостью.

## 1.4. Преимущества труб РОСТерм из термостабилизированного полипропилена PP-RCT FRP

Благодаря свойствам сырья, применяемого для изготовления труб, система из PP-RCT обладает следующими преимуществами:

- Трубы, изготовленные из PP-RCT, нейтральны к окружающей среде. Продукт безопасен как на стадии производства, так и на стадии его эксплуатации. В процессе утилизации не используются экологически вредные вещества. При горении не выделяются токсичные газы.
- Материал труб стоек к химически активным веществам, а также не содержит токсичных элементов, что важно при применении труб в системах водоснабжения.
- Малый вес по сравнению со стальными трубопроводами делает систему более мобильной в рамках стесненных условий производства работ. Такое свойство позволяет экономить на транспорте и перемещении продукции на строительной площадке.
- Трубы не коррозируют и не зарастают. Таким образом, проходное сечение трубы не сужается на протяжении всего срока эксплуатации.
- Высокая химическая стойкость позволяет использовать систему для транспортировки химически активных сред.
- Низкая шероховатость внутренней поверхности обеспечивает низкие потери давления по всей длине трубопровода.
- Трубы не проводят блуждающие токи, гасят шумы и вибрации, благодаря низкой теплопроводности нуждаются в меньшем количестве теплоизоляции.
- Трубы PP-RCT FRP за счет особенностей свойств исходного сырья могут обладать меньшей толщиной стенки по сравнению с традиционными армированными трубами PP-R с сохранением технико-эксплуатационных и прочностных характеристик трубопровода, что приводит к увеличению пропускной способности системы.

Основной особенностью труб РОСТерм FRP по сравнению с трубами, армированными алюминием, является полное отсутствие так называемого эффекта расслоения в процессе эксплуатации системы горячего водоснабжения и отопления, чего практически невозможно избежать при использовании труб, армированных алюминием, что связано с особенностью технологии производства. Как результат — проникновение в систему кислорода и выход из строя отдельных частей системы.

#### 1.5. Хранение. Транспортировка. Стойкость к ультрафиолету

Трубы и соединительные детали из PP-RCT необходимо оберегать от ударов и механических нагрузок. При перевозке трубы ее следует укладывать на ровную поверхность, предохраняя от острых металлических углов и ребер транспортной платформы. Транспортировка, погрузка и разгрузка полипропиленовых труб должны проводиться при температуре наружного воздуха не ниже -10 °C. При использовании специальных устройств, обеспечивающих фиксацию труб, разрешается перевозка при температуре до -25 °C. Доставленные на объект детали перед сборкой необходимо выдержать при положительной температуре не менее 2 ч. Трубы следует укладывать на стеллажи или на поверхности, которые исключают прогиб труб. Высота штабеля не должна превышать 1 м. Складировать трубы и соединительные детали разрешается на расстоянии не ближе 1 м от нагревательных приборов.

Трубы из полимерных материалов подвержены влиянию прямого ультрафиолетового излучения. По этой причине требуется проводить ряд мероприятий, связанных с защитой при хранении на открытом воздухе. Хранить полипропиленовые трубы и фитинги следует в закрытых помещениях или под навесом, вне досягаемости ультрафиолетового излучения. Не следует хранить их в одном помещении с растворителями, красками и другими подобными материалами. Для производства труб РОСТерм используется стабилизатор ультрафиолетового излучения, что исключает изменение физико-химического состава труб и фасонных изделий, применяемых для инженерных систем внутри здания.

#### 1.6. Маркировка изделий системы РОСТерм из полипропилена PP-RCT

В процессе производства на трубы РОСТерм наносится маркировка с периодичностью не более 1 м со следующей информацией: название марки трубы (РОСТерм), материал, из которого производится труба, размер (наружный диаметр и толщина стенки), соответствие стандартам, страна-производитель, дата и время производства трубы, идентификационная отметка производственной линии.



<sup>\*</sup> Серия труб S (номинальная) — безразмерная величина, определяемая как отношение расчетного напряжения к максимальному допустимому рабочему давлению.

#### 1.7. Противопожарная защита

- Объем необходимых противопожарных мероприятий зависит от вида монтажа.
- Порядок сооружения противопожарных конструкций и класс огнестойкости определяются в соответствии с действующими предписаниями.
- Трубы и фасонные части системы РОСТерм не выделяют токсичных газов при горении.
- Для предотвращения распространения огня на трубопроводах применяются специальные противопожарные муфты. В случае необходимости они устанавливаются в местах прохода через строительные конструкции.
- В качестве оптимального способа обеспечения противопожарной защиты трубопроводной системы рекомендуется применение негорючей изоляции.



#### 1.8. Армирование труб

Основная задача армированного слоя — выполнять функцию кислородного барьера и сокращать тепловое линейное расширение трубопровода. В настоящее время существует два наиболее популярных варианта армирования труб из полипропилена.

#### 1. Армирование труб алюминиевой фольгой (верхний слой)

Процесс происходит посредством обволакивания сплошной алюминиевой фольгой внешнего слоя полипропиленовой трубы с предварительным нанесением на нее специального клея (Рис. 1). После чего на алюминиевый слой наносится слой полипропилена, основная функция которого — защитная.

#### 2. Армирование труб алюминиевой фольгой (средний слой)

Такая технология практически идентична первому способу нанесения армированного слоя с единственной особенностью — армированный слой располагается в средней части трубы (Рис. 2).

Можно выделить два основных недостатка армирования алюминием:

- 1. Такие трубы необходимо зачищать специальным инструментом, в противном случае возможна электрохимическая коррозия алюминия, что приведет к преждевременному износу трубы;
- 2. Технология производства требует высочайшего контроля в процессе сушки слоя полипропиленовой трубы, на который наносится алюминиевая фольга, и тщательного входного контроля наносимого клея между алюминием и трубой, что в условиях массового производства является трудоемким.

И, как результат, в процессе эксплуатации трубы с переменным носителем на внешней части трубы появляются вздутия и пустоты из-за образовавшегося конденсата (Рис. 3). К преимуществам данного вида армирования можно отнести наименьшее линейное расширение у полимерных труб — 0.03 мм/м °C.



Такая технология нанесения алюминиевого слоя является более современной по отношению к предыдущей. Основное отличие в технологии заключается в том, что алюминиевая фольга предварительно перфорируется и таким же образом наносится на внешнюю часть трубы (Рис. 4). Такая технология производства только на 70–80% позволяет избежать описанную выше проблему, но при этом практически исключает полное раскрытие алюминиевого слоя.

Существует два варианта соединения фольги:

- соединение замковым способом (самый распространенный способ производства);
- соединение лазерной стыковой сваркой (в сравнении с первым способом является более современным и технологически более сложным).

#### 4. Армирование труб стекловолокном (FRP), (Agua)

Армированный слой расположен в средней части трубы (Рис. 5). Такой способ армирования в настоящий момент — самый современный, так как армированный слой является продуктом лабораторного соединения молекул PP-R и стекловолокна. Полипропилен, армированный стекловолокном, это трехслойный композит, в котором средний армирующий слой стекловолокна «сваривается» с частицами полипропилена соседних слоев. В результате получается монолитная конструкция, которая лишена существенного недостатка труб, армированных алюминием, то есть эффекта «расслоения».

Также к преимуществам данного вида армирования можно отнести и то, что уменьшается время монтажа, так как перед сваркой не требуется предварительной зачистки алюминиевого слоя. Коэффициент линейного расширения труб, армированных стекловолокном, равен 0,035 м/мм °С, что несущественно отличается от труб, армированных алюминием, и подходит для расчета любых современных инженерных систем.

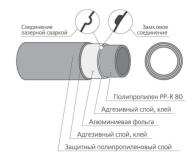



Рис. 1

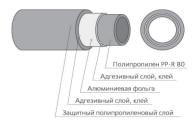



Рис. 2



Рис. 3

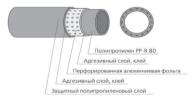



Рис. 4

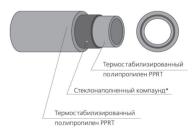



Рис. 5

#### 1.9. Определение срока службы труб в системах ХВС, ГВС, отопления

Срок службы системы, предельно допустимые значения рабочей температуры и давления определяются согласно условиям эксплуатации по стандарту ISO 15874 и ГОСТ 32415-2013 и ГОСТ Р 53630-2015.

| Класс<br>эксплуатации | Температура<br>эксплуатации<br>Т <sub>раб</sub> , °C | Время при<br>Т <sub>раб</sub> , год | Температура<br>эксплуатации<br>Т <sub>макс</sub> ,°С | Время при<br>Т <sub>макс</sub> , год | Аварийная<br>температура<br>Т <sub>авар</sub> , °C | Время при<br>Т <sub>авар</sub> , час | Область применения                                                                                  |
|-----------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1                     | 60                                                   | 49                                  | 80                                                   | 1                                    | 95                                                 | 100                                  | Горячее водоснабжение (60 °C)                                                                       |
| 2                     | 70                                                   | 49                                  | 80                                                   | 1                                    | 95                                                 | 100                                  | Горячее водоснабжение (70 °C)                                                                       |
| 4                     | 20<br>40<br>60                                       | 2,5<br>20<br>25                     | 70                                                   | 2,5                                  | 100                                                | 100                                  | Высокотемпературное напольное<br>отопление, низкотемпературное<br>отопление отопительными приборами |
| 5                     | 20<br>60<br>80                                       | 14<br>25<br>10                      | 90                                                   | 1                                    | 100                                                | 100                                  | Высокотемпературное отопление<br>отопительными приборами                                            |
| ХВ                    | 20                                                   | 50                                  | -                                                    | -                                    | -                                                  | -                                    | Холодное водоснабжение                                                                              |

**Класс эксплуатации 1** — условие эксплуатации трубопроводов в системах горячего водоснабжения с постоянной рабочей температурой 60 °C ( $T_{pa6}$ ). Для данного класса эксплуатации предусмотрено ежегодное увеличение рабочей температуры до 80 °C ( $T_{mak}$ ) сроком на 175 часов для санации системы водоснабжения, а также допускается кратковременное увеличение рабочей температуры до 95 °C ( $T_{anan}$ ) сроком до 100 часов в случае аварийной ситуации. Суммарный срок эксплуатации  $T_{pa6} + T_{makc} + T_{abad} = 50$  лет.

**Класс эксплуатации 2** — условие эксплуатации трубопроводов в системах горячего водоснабжения с постоянной рабочей температурой 70 °C ( $T_{pac}$ ). Для данного класса эксплуатации предусмотрено ежегодное увеличение рабочей температуры до 80 °C ( $T_{mac}$ ) сроком на 175 часов для санации системы водоснабжения, а также допускается кратковременное увеличение рабочей температуры до 95 °C ( $T_{aваp}$ ) сроком до 100 часов в случае аварийной ситуации. Суммарный срок эксплуатации  $T_{pac} + T_{makc} + T_{aвap} = 50$  лет.

**Класс эксплуатации 4** — условие эксплуатации трубопроводов в системах высокотемпературного напольного отопления или низко-температурного радиаторного отопления. В данном классе эксплуатации система отопления работает в температурном режиме, где максимальная температура в подающем трубопроводе не более 70 °C ( $T_{\text{макс}}$ ). Допускается кратковременное увеличение рабочей температуры до 100 °C ( $T_{\text{авар}}$ ) сроком до 100 часов в случае аварийной ситуации. Суммарный срок эксплуатации  $T_{\text{раб}} + T_{\text{макс}} + T_{\text{авар}} = 50$  лет.

**Класс эксплуатации 5** — условие эксплуатации трубопроводов в системах высокотемпературного радиаторного отопления. В данном классе эксплуатации система отопления работает в температурном режиме, где максимальная температура в подающем трубопроводе 90 °C ( $T_{\text{макс}}$ ). Допускается кратковременное увеличение рабочей температуры до 100 °C ( $T_{\text{авар}}$ ) сроком до 100 часов в случае аварийной ситуации. Суммарный срок эксплуатации  $T_{\text{раб}} + T_{\text{макс}} + T_{\text{макс}} = 50$  лет.

**Класс эксплуатации ХВ** — условие эксплуатации трубопроводов в системах холодного водоснабжения. Срок эксплуатации — 50 лет.

Максимальное допустимое рабочее давление для каждого класса эксплуатации в зависимости от типа используемого трубопровода из полипропилена PP-R.

#### Для однослойных труб S серия рассчитывается по следующей формуле:

$$S = \frac{d_n \! - \! e_n}{2e_n}, \quad \mathop{\begin{subarray}{c} } \mathop{\begin{subarray}{c}$$

Зная серию трубы S и исходя из представленных данных, возможно определить соответствие трубопровода классу эксплуатации в зависимости от рабочего давления.

#### 1.10. Расчет срока службы труб при проектных параметрах системы

Данная методика позволяет рассчитать срок службы трубопровода, если нарушается условие, где серия S трубы становится P расчетной серии P р

#### Задача 1

Необходимо рассчитать срок службы трубы POCTepm PP-R Aqua из полипропилена, армированного стекловолокном, SDR 7,4, эксплуатируемой в системе ГВС с рабочим давлением 7,8 бара, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 2.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

$$T_{not} = T_1 = 70 \, ^{\circ}C_1$$

T максимальная =  $T_{\text{макс}}$  = 80 °C,

T аварийная =  $T_{abab}$  = 95 °C.

Определяем расчетное напряжение в стенке трубы ( $\delta_a$ ) из следующего выражения:

$$\delta_0 = P \times S = 0.78 \times 3.2 = 2.496 \text{ M}\Pi a$$
,

где P — рабочее давление, S — расчетная серия трубы.

$$S = (d_n - e_n)/2 \times e_n$$

где d \_ — номинальный наружный диаметр в мм, e \_ — номинальная толщина стенки в мм.

Устанавливаем коэффициенты запаса прочности при температурах T<sub>раб</sub>, Т<sub>макс</sub>, Т<sub>авар</sub> согласно ГОСТ 32415-2013:

$$C_1 = 1,5,$$

$$C_{2} = 1,3,$$

$$C_{3} = 1$$
.

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:

$$\delta_1 = C_1 \times \delta_2 = 1.5 \times 2.496 = 3.744 \text{ M}\Pi \text{a},$$

$$δ_2$$
 =  $C_2$  x  $δ_0$  = 1,3 x 2,496 = 3,245 MΠa,

$$δ_3 = C_3 \times δ_0 = 1 \times 2,496 = 2,496 \text{ M}\Pi a.$$

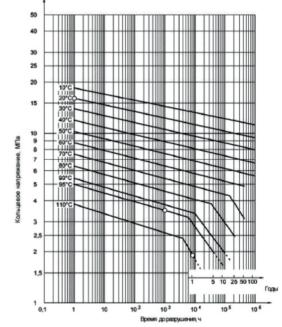
Пользуясь логарифмической формулой прочности материала PP-R, определяем время  $t_{\text{раб}}$ ,  $t_{\text{макс}}$ ,  $t_{\text{авар}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_1$ ,  $\delta_2$ ,  $\delta_3$ :

$$lg(t_{pa6}) = -55,725 - 9484,1/T_{pa6} lg \delta_1 + 25502,2/t_{pa6} + 6,39 lg \delta_1$$

$$\lg(t_{\text{MaKC}}) = -55,725 - 9484,1/T_{\text{MaKC}} \lg \delta_2 + 25502,2/t_{\text{MaKC}} + 6,39 \lg \delta_2$$

$$lg(t_{abap}) = -55,725 - 9484,1/T_{abap} lg \delta_3 + 25502,2/t_{abap} + 6,39lg \delta_3$$

Полученные данные умножаем на коэффициенты в зависимости от продолжительности эксплуатации:


$$T_{na6} = 70 \, ^{\circ}\text{C} = 98\%,$$

$$T_{\text{maxc}} = 80 \, ^{\circ}\text{C} = 2\%,$$

$$T_{apan} = 95 \, ^{\circ}\text{C} = 0,0228\%.$$

Пользуясь формулой TYD =  $\Sigma$  lpha/t, получаем следующее: TYD = 0,000437 ч.

Далее вычисляем  $T_x$  по формуле  $T_x = 100/TYD$ :  $T_x = 100/0,000437 = 228 705 ч = 26,11 года.$ 



Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 2 срок службы данной трубы 26,11 года с рабочим давлением 7,8 бара.

#### Задача 2

Необходимо рассчитать срок службы трубы POCTepм PP-RCT FRP из термостабилизированного полипропилена, армированного стекловолокном, SDR 6, эксплуатируемой в системе ГВС с рабочим давлением 13,9 Бар и температурным режимом  $70^{\circ}$ C, в соответствии с ГОСТ 32415-2013 для класса эксплуатации 2.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчётного срока службы 50 лет:

$$T_{pa6} = T_1 = 70 \, ^{\circ}C$$

$$T$$
 максимальное =  $T_{\text{макс}}$  = 80 °C

$$T$$
 аварийное =  $T_{abab}$  = 95 °C

Определяем расчетное напряжение в стенке трубы ( $\delta_{o}$ ) из следующего выражения:

$$\delta_0 = P \times S = 1.39 \times 2.5 = 3.475 \text{ M}\Pi \text{a},$$

где P — рабочее давление, S — расчетная серия трубы.

$$S = (d_n - e_n)/2 \times e_n$$

где d<sub>n</sub> — номинальный наружный диаметр в мм, e<sub>n</sub> — номинальная толщина стенки в мм.

Устанавливаем коэффициенты запаса прочности при температурах T<sub>раб</sub>, Т<sub>макс</sub>, Т<sub>авар</sub>, согласно ГОСТ 32415-2013:

$$C_1 = 1,5,$$

$$C_2 = 1,3,$$

$$C_{3} = 1.$$

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:

$$\delta_1 = C_1 \times \delta_0 = 1.5 \times 3.475 = 5.2125 \text{ M}\Pi \text{a},$$

$$δ_2$$
 =  $C_2$  x  $δ_0$  = 1,3 x 3,475 = 4,5175 MΠa,

$$δ_3 = C_3 \times δ_0 = 1 \times 3,475 = 3,475 \text{ M}\Pi a.$$

Пользуясь логарифмической формулой прочности материала PP-RCT, определяем время  $t_{\text{раб}}$ ,  $t_{\text{макс}}$ ,  $t_{\text{макс}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_{\gamma}$ ,  $\delta_{\gamma}$ ,  $\delta_{\gamma}$ ,  $\delta_{\gamma}$ .

$$lg(t_{pa6})$$
= -119,546 — 23738,797/ $T_{pa6}$   $lg \delta_1$  + 52176,696/ $t_{pa6}$  + 31,279 $lg \delta_1$ 

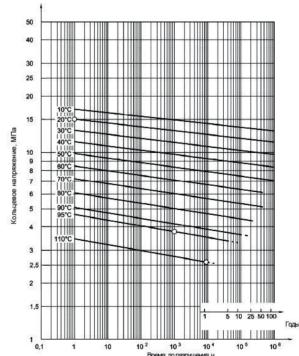
$$lg(t_{\text{\tiny MAKC}})$$
= -119,546 — 23738,797/ $T_{\text{\tiny MAKC}}$   $lg$  δ $_2$  + 52176,696/ $t_{\text{\tiny MAKC}}$  + 31,279 $lg$  δ $_2$ 

$$lg(t_{abap}) = -119,546 - 23738,797/T_{abap} lg \delta_3 + 52176,696/t_{abap} + 31,279 lg \delta_3$$

$$t_{pa6} = 450 000 ч (51 год),$$

$$t_{\text{макс}} = 333342 \text{ (4,310д}$$
 $t_{\text{авар}} = 14450 \text{ ч (1,6 лет)}.$ 

Полученные данные умножаем на коэффициенты в зависимости от продолжительности эксплуатации:


$$T_{pa6} = 70 \text{ °C} = 98\%,$$

$$T_{\text{Makc}} = 80 \text{ °C} = 2\%,$$

$$T_{abap}^{MAKC} = 95 \text{ °C} = 0,0228\%.$$

Пользуясь формулой TYD= $\Sigma \dot{\alpha}/t$  получаем следующее: TYD = 0,000454 ч.

Далее вычисляем 
$$T_x$$
 по формуле  $T_x = 100$  / TYD.  $T_y = 100/0,000454 = 220352 ч = 25,15 лет.$ 



Таким образом, для класса эксплуатации 2, срок службы данной трубы более 25 лет, с рабочим давлением 13,9 Бар и температурным режимом 70 °C.

#### Задача З

Необходимо рассчитать срок службы трубы РОСТерм FRP из полипропилена, армированного стекловолокном, SDR 7,4, эксплуатируемой в системе отопления с рабочим давлением 9,2 бара, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

```
\begin{split} &T_{pa6\,1} = T1 = 20 \,\,^{\circ}\text{C}, \\ &T_{pa6\,2} = T2 = 60 \,\,^{\circ}\text{C}, \\ &T_{pa6\,3} = T3 = 80 \,\,^{\circ}\text{C}, \\ &T_{makc} = T4 = 90 \,\,^{\circ}\text{C}, \\ &T_{abap} = T5 = 100 \,\,^{\circ}\text{C}. \end{split}
```

Определяем расчетное напряжение в стенке трубы  $(\delta_0)$  из следующего выражения:

```
\delta_0 = P \times S = 0.82 \times 2.5 = 2.94 \text{ M}\Pi \text{a},
```

где P — рабочее давление, S — расчетная серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах T<sub>раб</sub>, Т<sub>макс</sub>, Т<sub>авар</sub>, согласно ГОСТ 32415-2013:

 $C_{1:3} = 1,5$  (коэффициент запаса прочности для T 1-3),

 $C_2 = 1,3$  (коэффициент запаса прочности для T4),

С<sub>3</sub> = 1 (коэффициент запаса прочности для Т5).

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности.

```
\begin{split} &\delta_{1-3} = C_1 \times \delta_0 = 1,5 \times 2,94 = 4,4 \text{ M}\Pi\text{a}, \\ &\delta_4 = C_2 \times \delta_0 = 1,3 \times 2,94 = 3,8 \text{ M}\Pi\text{a}, \\ &\delta_5 = C_3 \times \delta_0 = 1 \times 2,94 = 2,9 \text{ M}\Pi\text{a}. \end{split}
```

Пользуясь графиком изотермы прочности материала PP-R, определяем время  $t_{\text{раб}}, t_{\text{макc}}, t_{\text{авар}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно 8 8 8

```
\delta_{1-3}, \, \delta_4, \, \delta_5: T_{pa6\,1} > 900\,\,000\,\,ч (100 лет), T_{pa6\,2} > 450\,\,000\,\,ч (50 лет), T_{pa6\,3} = 115\,\,299\,\,ч (10,1 года), T_{MAKC} = 20\,\,194\,ч (3,3 года), T_{abab} = 27\,\,000\,ч (1,92 года).
```

Далее из правила Майнера следует, что если время до разрушения трубы составляет  $t_1$  (лет) при непрерывном действии температуры T1, то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha_1$ , то «доля годового повреждения» составляет  $\alpha_1/t_1$ .

```
T_{\text{pa6.1}} = 20 °C — расчетный срок эксплуатации 14 лет, т. е. время действия данной температуры в течение года составляет \alpha_{\text{1}} = 28%,
```

```
T_{pa6\,2}=60~^{\circ}\text{C} — расчетный срок эксплуатации 25 лет, т. е. \alpha_{_2}=50\%, T_{pa6\,_3}=80~^{\circ}\text{C} — расчетный срок эксплуатации 10 лет, т. е. \alpha_{_3}=20\%, T_{makc}=90~^{\circ}\text{C} — расчетный срок эксплуатации 1 год, т. е. \alpha_{_4}=2\%, T_{abap}=100~^{\circ}\text{C} — расчетный срок эксплуатации 100 часов, т. е. \alpha_{_5}=0,0228\%, \alpha_{_1},\alpha_{_2},\alpha_{_3},\alpha_{_4},\alpha_{_5} — время действия температуры (T1, T2, T3, T4, T5 соответственно) в течение года в процентах.
```

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$  — время действия температуры (11, 12, 13, 14, 13 coordents entry is revenue roda in required

Пользуясь формулой TYD =  $\Sigma$  lpha/t, получаем следующее: TYD = 0,000415 ч.

```
Далее вычисляем Тх по формуле Тх = 100/TYD: Tx = 100/0,000438 = 240688 = 27,48 года.
```

Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5 расчетный срок службы данной трубы 27,48 года, с рабочим давлением 9,2 бара.

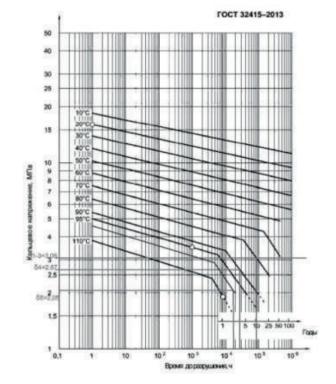
#### Задача 4

Необходимо рассчитать срок службы трубы РОСТерм FRP из полипропилена, армированного стекловолокном, SDR 7,4, эксплуатируемой в системе отопления с рабочим давлением 9,2 бара, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

$$\begin{split} &T_{\text{pa6 1}} = \text{T1} = 20 \text{ °C}, \\ &T_{\text{pa6 2}} = \text{T2} = 60 \text{ °C}, \\ &T_{\text{pa6 3}} = \text{T3} = 80 \text{ °C}, \\ &T_{\text{mac}} = \text{T4} = 90 \text{ °C}, \\ &T_{\text{abap}} = \text{T5} = 100 \text{ °C}. \end{split}$$

Определяем расчетное напряжение в стенке трубы ( $\delta_0$ ) из следующего выражения:


$$\delta_0 = P \times S = 0.82 \times 2.5 = 2.94 \text{ M}\Pi a,$$

где P — рабочее давление, S — расчетная серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах  $T_{\text{раб}}$ ,  $T_{\text{макс}}$ ,  $T_{\text{авар}}$  согласно ГОСТ 32415-2013:

 $C_{1.3}$  = 1,5 (коэффициент запаса прочности для Т 1-3),  $C_2$  = 1,3 (коэффициент запаса прочности для Т4),  $C_2$  = 1 (коэффициент запаса прочности для Т5).

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:  $\delta_{1.3} = C_1 \times \delta_0 = 1,5 \times 2,94 = 4,4 \text{ M}\Pi a, \\ \delta_4 = C_2 \times \delta_0 = 1,3 \times 2,94 = 3,8 \text{ M}\Pi a,$ 



Пользуясь графиком изотермы прочности материала PP-R, определяем время  $t_{\text{раб}}, t_{\text{макc}}, t_{\text{авар}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_{1.3}, \delta_4, \delta_5$ .

```
S<sub>1.3</sub>, O<sub>4</sub>, O<sub>5</sub>.

T<sub>pa6 1</sub> > 900 000 ч (100 лет),

T<sub>pa6 2</sub> > 450 000 ч (50 лет),

T<sub>pa6 3</sub> = 115 299 ч (10,1 года),

T<sub>makc</sub> = 20 194 ч (3,3 года),

T<sub>abap</sub> = 27 000 ч (1,92 года).
```

 $\delta_5 = C_3 \times \delta_0 = 1 \times 2,94 = 2,9 \text{ Mna.}$ 

Далее из правила Майнера следует, что если время до разрушения трубы составляет  $t_1$  (лет) при непрерывном действии температуры T1, то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha_1$ , то «доля годового повреждения» составляет  $\alpha_1/t_1$ .

 $T_{pa61} = 20\,^{\circ}\text{C}$  — расчетный срок эксплуатации 14 лет, т. е. время действия данной температуры в течение года составляет  $\alpha_1 = 28\%$ ,  $T_{pa62} = 60\,^{\circ}\text{C}$  — расчетный срок эксплуатации 25 лет, т. е.  $\alpha_2 = 50\%$ ,

 $T_{\text{раб 3}}^{\text{вос 2}}$  = 80 °C — расчетный срок эксплуатации 10 лет, т. е.  $\alpha_3^2$  = 20%,

 $T_{\text{макс}}^{\text{pool}} = 90 \, ^{\circ}\text{C} - \text{расчетный срок эксплуатации 1 год, т. е. } \alpha_{_{\! 4}} = 2\%,$ 

 $T_{\text{авар}} = 100~^{\circ}\text{C}$  — расчетный срок эксплуатации 100 часов, т. е.  $\alpha_{\text{s}} = 0,0228\%$ ,

 $\alpha_{3}^{3}, \alpha_{2}^{2}, \alpha_{3}^{3}, \alpha_{4}^{3}, \alpha_{5}^{2}$  — время действия температуры (T1, T2, T3, T4, T5 соответственно) в течение года в процентах.

Пользуясь формулой TYD =  $\Sigma$  lpha/t, получаем следующее:

TYD = 0,000415 ч.

Далее вычисляем Tx по формуле Tx = 100/TYD:

Tx = 100/0,000438 = 240688 ч = 27,48 года.

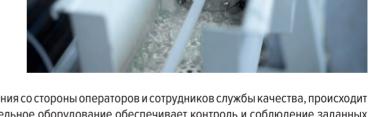
Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5 расчетный срок службы данной трубы 27,48 года, с рабочим давлением 9,2 бара.

На сегодняшний день термостабилизированный полипропилен—самый качественный материал среди номенклатуры полипропиленовых труб, который обладает уникальными физико-химическими характеристиками, позволяющими использовать его в системах холодного, горячего водоснабжения и отопления, с параметрами, значительно превосходящими допустимые для труб из обычного полипропилена.

#### 2. КОНТРОЛЬ КАЧЕСТВА

#### 2.1. Контроль качества

Решающим условием выбора поставщика является имя производителя, его репутация и авторитет на рынке. Чтобы получить надежно работающую инженерную систему, нужно применять трубы и фасонные изделия, о которых известно, что их производят из качественного, проверенного сырья, и не использовать при монтаже инженерных систем продукцию, привлекательную по стоимости, но сомнительного происхождения. Залогом качества являются два основных показателя — это контроль качества на производстве и контроль качества в лабораторных условиях сырья и конечного продукта.


#### 2.2. Контроль качества на производстве

На каждую единицу изготавливаемого изделия составляется технологическая карта, в которой прописаны требования по наладке оборудования и контрольных проверок определенных узлов линий и пластавтоматов. После наладки необходимого оборудования для производства труб и фитингов полученные данные передаются в отдел контроля качества с целью поддержания заданных параметров (температура нагрева, мощность, скорость и т. д.).

Вне зависимости от типа исходного материала оно должно быть сухим, поэтому перед подачей в экструдер сырье проходит процесс сушки.

На протяжении всего процесса производства труб и фасонных изделий происходит постоянный контроль и замеры следующих параметров:

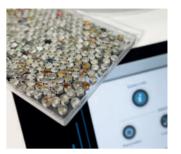
- шероховатость внутренней и внешней поверхности изделия;
- равномерность толщины стенки;
- ЭЛЛИПСНОСТЬ;
- наружный диаметр;
- маркировка.



Контроль за производственным процессом, помимо наблюдения со стороны операторов и сотрудников службы качества, происходит посредством ультразвукового измерения. Контрольно-измерительное оборудование обеспечивает контроль и соблюдение заданных размеров уже в процессе изготовления. В случае отклонения от заданных параметров ультразвуковой прибор автоматически передает сигнал, посредством которого продукция отбраковывается с последующей наладкой оборудования.

Большую роль в качестве изготавливаемого продукта играет качество отдельных устройств линии (тянущее и отрезающее устройства, ванны охлаждения, экструдер и т. д.). В случае если хотя бы одно из них не соответствует существующим стандартам, производство качественного продукта становится невозможным.

#### 2.3. Лабораторный контроль качества


Весь процесс производства сопровождается постоянными лабораторными испытаниями, которые являются одной из важнейших составляющих контроля качества получаемого продукта. Так, например, перед перемещением исходного сырья из зоны приемки в производственное помещение оно обязано пройти входной лабораторный контроль для подтверждения данных, указанных в паспорте качества поставщика на данную партию сырья. Непосредственно при выполнении производственного этапа операторы и сотрудники службы качества ежечасно фиксируют данные, полученные в ходе замеров продукции, а также ее визуального осмотра.

По окончании производственного процесса от готовой партии отбираются образцы согласно техническому регламенту и передаются в лабораторию для дальнейшего подтверждения качества. В случае успешного прохождения испытаний на партию оформляется паспорт качества, и готовая продукция передается на склад.

#### Исходное сырье и готовый продукт проходят следующие обязательные тесты на:

- определение геометрических характеристик ГОСТ 29325-92;
- определение относительного удлинения при разрыве ГОСТ 11262;
- изменение длины после прогрева ГОСТ Р ИСО 580-2008;
- определение показателя текучести расплава ГОСТ 11645-73;
- определение степени сшивки материала в изделиях из сшитого полиэтилена ISO-10147, ГОСТ Р 59112-2020:
- гидростатические испытания готовых изделий ГОСТ ISO 1167-1-2013;
- определение максимального изгибающего момента для латунных шаровых кранов EN 13828;
- определение термостабильности [индукционный период окисления (ОИТ)] ГОСТ Р 56756-2015;
- определение содержания летучих веществ на соответствие ГОСТ 26996-86 и ГОСТ 16338-85;
- определение плотности веществ ГОСТ 15139-69;
- определение ударной прочности по Шарпи ГОСТ 32415-2013;
- определение состава металлов:
- испытания изделий из PPSU на определение внутренних напряжений (до 8 МПа);
- определение наличия/отсутствия кислородозащитного барьера в готовых изделиях;
- пневматические испытания готовых изделий;
- испытания на сжатие;
- испытания на растяжение соединений.





Обращаем ваше внимание, что, помимо ежедневного планового контроля, проводится выборочный контроль продукции, которая отбирается случайным образом в процессе производства и со склада готовой продукции. Отобранная продукция проходит полный спектр испытаний в собственных лабораториях и в лабораториях независимых организаций, на основании которых продукция сертифицируется. По результатам испытаний составляются детальные паспорта, которые хранятся в картотеках фабрики-производителя.

#### 2.4. Стандарты и нормативная документация

| DIN 8077            | Полипропиленовые трубопроводы. Размеры                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| DIN 8078            | Полипропиленовые трубопроводы.<br>Общие требования к качеству. Испытания                                                     |
| DIN 16962           | Способы соединения и соединительные детали в напорных трубопроводах из полипропилена                                         |
| СП 40-101-96        | Проектирование и монтаж трубопроводов из полипропилена рандом сополимер                                                      |
| ГОСТ 32415-<br>2013 | Трубы напорные из термопластов и соединительные детали к ним для систем водоснабжения и отопления. Общие технические условия |
| ГОСТ 53630-<br>2015 | Трубы напорные многослойные для систем водоснабжения и отопления. Общие технические условия                                  |
| E-DIN1988           | Внутренние коммуникации питьевого водоснабжения                                                                              |
| DIN 16928           | Проектирование соединений и компонентов трубопроводов                                                                        |

| DIN 4109            | Звукоизоляция в строительстве жилья                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------|
| DIN 18381           | Монтаж систем газоснабжения, водоснабжения<br>и канализации                                         |
| VOB Part C          | Внутридомовые инженерные сети                                                                       |
| DVGW W308           | Нормы и требования к трубам, соединительным деталям и методам сборки систем питьевого водоснабжения |
| EnEG                | Закон об энергосбережении                                                                           |
| СП<br>30.13330.2020 | Внутренний водопровод и канализация зданий                                                          |
| СП<br>60.13330.2020 | Отопление, вентиляция и кондиционирование                                                           |
| ISO 5363-2015       | Пластиковые трубопроводы для систем холодного и горячего водоснабжения из полипропилена (PP)        |
| ISO 21003-2         | Многослойные трубопроводы для внутренних сетей<br>XBC и ГBC                                         |

#### 3. ТЕХНОЛОГИЯ МОНТАЖА

#### 3.1. Технология монтажа

Особенность системы РОСТерм заключается в том, что ее применение в системах холодного, горячего водоснабжения и отопления не ограничивает использования латунной или другой запорно-регулирующей арматуры и не исключает возможности соединения со стальными трубопроводами, что очень важно в случае реновации существующих трубопроводов, где необходима, например, только замена стояков.

- Раструбная сварка.
- Сварка встык.
- Соединение электросварными фитингами.
- Соединение с применением седловых фасонных изделий.
- Фланцевое соединение.
- Ремонт.
- Резьбовое соединение.

#### 3.2. Раструбная сварка

#### Подготовка инструмента

Для начала монтажа необходимо правильно подготовить монтажное оборудование. Для этого нужно достать сварочный аппарат из монтажного ящика, установить его в рабочей зоне, предварительно закрепив (в случае стационарного использования).





Перед установкой нагревательных элементов нужно убедиться, что нагревательная поверхность сварочного аппарата чистая. В случае необходимости нагревательную гильзу и нагревательный дорн следует очистить неволокнистой губкой с целью неповреждения нагревательных поверхностей. Затем вручную плотно закрепить нагревательные плашки при помощи входящих в комплект трубок с латунной резьбой. В случае установки на нагревательный блин нескольких плашек нужно следить, чтобы их поверхность не выходила за край нагревательного дорна. Весь процесс настройки должен проходить в ненагретом состоянии сварочного аппарата.





После подготовки сварочный аппарат нужно подключить к электрической сети и при помощи регулятора настроить температуру нагрева 260 °C. Период нагрева зависит от условий окружающей среды. Сварочные работы можно начинать только после того, как аппарат нагреется до нужной температуры, определить которую можно посредством штифтового индикатора, установленного на сварочном аппарате, или при помощи прибора быстрого измерения температуры [бесконтактный термометр (пирометр)]. Первая сварка должна производиться только спустя 5 минут после достижения сварочной температуры.

Монтаж труб PP-R/PP-RCT производства РОСТерм возможно проводить при температуре окружающей среды не ниже 0 °C, место сварки следует защищать от атмосферных осадков и пыли, согласно СП 40-101-96 пункт 5.8.



#### Подготовка к монтажу

- Рекомендуется ножом или специальным инструментом соскоблить внешний слой, предназначенный для нагревания под углом 30-45° (не более 0,1 мм).
- Перед началом монтажа нужно осмотреть материал, проверить функционирование вентилей, кранов и металлической резьбы. Свариваемый фитинг не должен при моделировании соединения болтаться на трубе. В случае попадания таких элементов их стоит отбраковывать.



После предварительного осмотра в случае необходимости трубу нужно отрезать при помощи специальных режущих приборов (ножницы или труборез, в зависимости от диаметра) строго под углом 90  $^{\circ}$ , образовавшиеся заусенцы и стружку нужно удалить. При помощи маркера рекомендуется обозначить глубину сварки на конце трубы. При этом нужно учитывать, что труба не должна быть вставлена до упора в муфту фитинга с целью предотвращения сужения проходного сечения в месте соединения (не более 1 мм).





Для сварки трубы, армированной стекловолокном, рекомендуется обработать спиртосодержащим раствором внутреннюю сторону фитинга и наружный конец трубы. При этом также будут удалены частицы мелкого абразива и пыли, которые способны провоцировать повреждение тефлонового покрытия насадок сварного аппарата.

Для обезжиривания рекомендуется применять спиртосодержащие растворы (до 70%), ацетон либо уайт-спирит.

#### Сварка

Далее подготовленный конец трубы и фитинг вставляем в нагревательную гильзу до упора на нагревательный дорн, не вращая. Оба элемента нагреваем в течение времени, указанного в таблице, с того момента, когда труба и фитинг полностью надеты на нагревательный элемент. Во время нагревания запрещается вращать детали с целью предотвращения сжатия материала.





После окончания нагрева нужно снять трубу и фитинг с насадки и медленным поступательным движением произвести соединение элементов. Время с момента снятия с нагревательной плашки до момента соединения нагретых элементов не должно превышать указанного в таблице N° 5.





Таблица №1. Параметры сварки

| Наружный диаметр трубы | Глубина сварки | Время наг             | ревания        | Время обработки | Время охлаждения |
|------------------------|----------------|-----------------------|----------------|-----------------|------------------|
| MM                     | ММ             | сек. DVS <sup>*</sup> | сек. РОСТерм** | сек.            | мин.             |
| 20                     | 14,5           | 5                     | 8              | 4               | 2                |
| 25                     | 16,0           | 7                     | 11             | 4               | 2                |
| 32                     | 18,0           | 8                     | 12             | 6               | 4                |
| 40                     | 20,5           | 12                    | 18             | 6               | 4                |
| 50                     | 23,0           | 18                    | 27             | 6               | 4                |
| 63                     | 26,5           | 24                    | 36             | 8               | 6                |
| 75                     | 30,5           | 30                    | 45             | 8               | 8                |
| 90                     | 34,5           | 40                    | 60             | 8               | 8                |
| 110                    | 40,5           | 50                    | 75             | 10              | 8                |
| 125                    | 43,0           | 60                    | 90             | 10              | 8                |


При монтаже труб запрещается применять составы, содержащие: хлорсульфоновую, азотную, серную кислоты; галогены, олеум, пероксид водорода, бензол, толуол.

В результате сварки образуется сплошное монолитное (гомогенное) соединение. Готовое соединение по истечении времени охлаждения можно подвергать нагрузке.





Трубы диаметром 50–125 мм с целью удобства и упрощения монтажа рекомендуется сваривать специальным сварочным аппаратом. Такой сварочный аппарат является стационарным инструментом и за счет встроенного фиксирующего механизма элементов позволяет осуществлять предварительный высокоточный монтаж сложных конструкций или элементов системы.



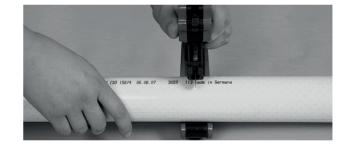


<sup>\*</sup> Время нагревания согласно DVS 2207 (Германия).
\*\* Время нагревания, рекомендуемое компанией «РОСТерм».





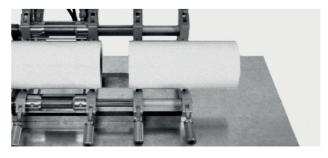





## 3.3. Сварка встык

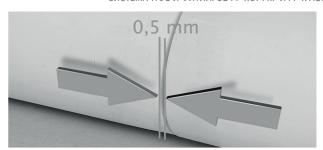
Монтаж труб диаметром от 125 до 315 мм можно осуществлять методом стыковой сварки. Перед началом сварочных работ нужно подготовить сварочный аппарат, предварительно установив его на ровной поверхности, и убедиться в функционировании всех механических деталей машины.

#### Подготовка труб большого диаметра проходит следующие стадии:


1. В случае необходимости отрезать трубу строго под углом  $90^{\circ}$ .



2. Перед свариванием с обоих концов труб снимается верхний слой не более 0,1 мм (скребком или специальным рубанком).

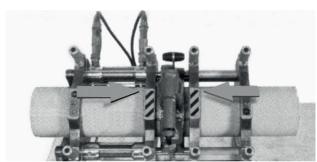



3. Далее трубы устанавливаются в зажимное устройство, фиксируются.

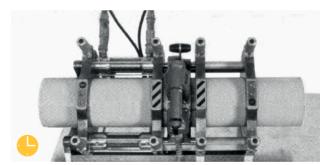


4. Проверить ширину зазора между сведенными трубами (не более 0,5 мм).

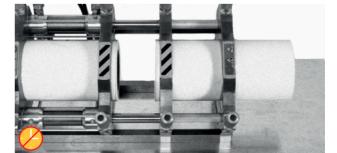
После того, как все готово к сварке, нужно убедиться, что нагревательный элемент достиг нужной температуры ( $210\pm10$  °C).



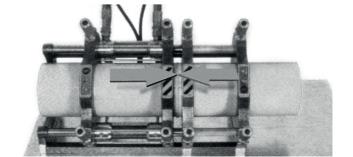

#### Затем процесс сварки выглядит следующим образом:


1. Вставить нагревательный элемент между подготовленными трубами.




2. Одновременно оба конца трубы подаются к нагревательному элементу под давлением.




3. После достижения необходимой высоты наплыва давление снижается, и с этого момента начинается отсчет времени нагрева.



4. После окончания времени нагрева трубы отводятся от нагревательного элемента, и нагревательный элемент убирается в сторону.



5. Незамедлительно после того, как нагревательный элемент убрали в сторону, трубы вновь сдвигаются установленными на сварочном аппарате салазками.



6. Под определенным давлением трубы выдерживаются некоторое время.

Готовое соединение по истечении времени охлаждения можно подвергать нагрузке.

#### 3.4. Соединение электросварными фитингами

Установленный на рабочее место сварочный аппарат следует осмотреть и подготовить провода, которые служат для сваривания электросварных фитингов. После чего сварочный аппарат подключается к электрической сети (220 В). Очень важно проконтролировать, чтобы аппарат нагрелся до рабочей температуры.



#### Подготовка к монтажу

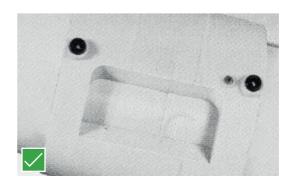
Края труб должны быть отрезаны под углом 90° специальным инструментом (ножницы или труборез), обезжирены и высушены. В случае сваривания труб диаметром более 50 мм трубы нужно обработать специальным скребком, для того чтобы снять окисленный слой. Обращаем внимание на то, что при работе с трубами РОСТерм FRP не требуется дополнительных мероприятий по зачистке армированного слоя.





Рекомендуется электросварные муфты до начала монтажа оставлять в оригинальной полиэтиленовой оболочке для того, чтобы не загрязнить и не повредить внутренний слой нагревательной спирали. В противном случае монтаж приведет к некачественной сварке.






#### Сварка

Удалив защитную упаковку с электросварной муфты, надеть ее на свариваемые концы труб таким образом, чтобы муфта находилась свободно на свариваемых трубах без собственной нагрузки и напряжения. Воздушный зазор должен быть равномерным по всему объему. Несоблюдение таких правил приведет к недопустимому вытеканию расплавленной массы и некачественному соединению.

Подготовленные заранее контактные провода вставляем в специальные отверстия на внешней части электросварной муфты. Считывающим устройством проводим по имеющемуся на муфте штрихкоду, после чего сварочный аппарат автоматически считывает необходимое время нагрева. В случае отсутствия последнего — настроить аппарат под диаметр трубы вручную. По окончании времени нагрева происходит автоматическое отключение. Готовое соединение можно вводить в эксплуатацию не ранее чем через один час.





#### 3.5. Соединение с применением седловых фасонных изделий

В трубах, в которые делается врезка, нужно просверлить соответствующее отверстие специальным инструментом (фреза).

В случае с трубами РОСТерм FRP не требуется дополнительной зачистки слоя, как в случае с трубами, армированными алюминием.



Обезжирив и насухо протерев полученное отверстие, предварительно нагрев и подготовив сварочный аппарат до температуры 260 °C, можно приступить к процессу сварки. Нагревательный штуцер инструмента для вварного седла вставляется в отверстие в стенке трубы до тех пор, пока инструмент полностью не упрется в наружную поверхность стенки трубы.

Затем штуцер вварного седла вставляется в нагревательную плашку до тех пор, пока поверхность седла не упрется в край нагревательного элемента.



Спустя 30 секунд сварочный аппарат извлекается из тела трубы, а вварное седло извлекается с нагревательной плашки, после чего незамедлительно вставляется в нагретое отверстие трубы.



Затем седло следует точно и плотно, избегая вращения, прижать к нагретой наружной поверхности трубы, неподвижно фиксируя в течение 15 секунд.

После 10 минут остывания соединение можно вводить в эксплуатацию.



#### 3.6. Фланцевое и резьбовое соединение

В системах инженерного обеспечения зданий и сооружений используется запорно-регулирующая арматура и навесное оборудование, крепление которого к системам трубопроводов происходит посредством ответных фланцев или резьбовых соединений. Уникальность системы РОСТерм позволяет осуществить монтаж с такой арматурой.

- Втулка под фланец изготавливается из полипропилена для фиксации на трубопроводе ответного фланца.
- Ответный стальной фланец увеличивает срок службы изделия, не ухудшая при этом его физических свойств.\*
- Разборные резьбовые соединения с наружной и внутренней резьбой (американка).

- Неразборные резьбовые соединения с наружной и внутренней резьбой.
- Монтажное оборудование, необходимое для сварки, идентично тому, что применяется для раструбной сварки.
- Перед монтажом необходимо убедиться, что втулка под фланец, сам фланец или комбинированный фитинг подобраны правильно, и предварительно, до присоединения втулки к трубе, фланец необходимо надеть на трубу, сопоставив его с предполагаемым местом соединения навесного оборудования, а место сварки обезжирить.
- После осуществления монтажа обратный фланец нужно подвести к втулке, находящейся на конце трубы, и посредством болтов произвести соединение с ответным фланцем навесного оборудования, установив уплотнительные прокладки.









#### \*Технические характеристики фланцев стальных РОСТерм

| Чертеж | Размер | E      | I      | S     | F     | D      | Кол-во отверстий |
|--------|--------|--------|--------|-------|-------|--------|------------------|
| . E    | 50     | 148,75 | 105    | 13,55 | 18,24 | 62,03  | 4                |
|        | 63     | 158,85 | 120,5  | 13,83 | 18,05 | 78,15  | 4                |
| •      | 75     | 179    | 143    | 15,6  | 17,85 | 92,42  | 4                |
| S      | 90     | 194    | 157    | 15,9  | 18    | 108,09 | 4                |
|        | 110    | 212,35 | 117,4  | 17,9  | 17,6  | 135,07 | 8                |
| F D    | 125    | 241,5  | 207,25 | 17,77 | 18,08 | 159,09 | 8                |

#### 3.7. Ремонт

#### Ремонт электросварными муфтами

В случае повреждения средней части трубопровода необходимо вырезать минимум 3–4 длины муфты под прямым углом. Затем подготовить новый отрезок трубы, подходящий на вырезанное место (предварительно зачищенный с обеих сторон и обезжиренный) на длину чуть больше целой муфты. Вынуть из упаковки две электросварные муфты и насадить их на оба конца подготовленного отрезка трубы. Затем на предварительно обрезанный существующий трубопровод вставить трубу с муфтами и надвинуть муфты до маркировки на старой трубе. Рекомендуется, чтобы трубы были выставлены ровно и не несли никакой нагрузки, прежде чем они подвергнутся процессу сварки.

#### Ремонт методом вплавления

Ремонт поврежденных участков может осуществляться методом вплавления в образовавшееся отверстие полипропиленового цилиндра. Для монтажа требуется подключить в электрическую сеть сварочный аппарат с уже установленной на него ремонтной насадкой и настроить необходимую температуру.

Предварительно подготовить ремонтную поверхность поврежденного трубопровода, рассверлив отверстие диаметром 10 мм и обезжирив его. На ремонтном цилиндре из полипропилена необходимо отметить маркером глубину, равную сумме 2 мм и толщины стенки просверленной трубы.

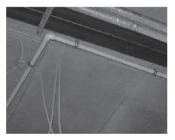


Единовременно необходимо начать разогрев внутренних стенок поврежденной трубы и ремонтного цилиндра, выдержав время нагрева — 5 секунд. Затем разогретый ремонтный цилиндр нужно вставить в нагретое отверстие, избегая осевого вращения цилиндра.

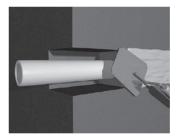
После охлаждения лишнюю часть полипропиленового цилиндра необходимо срезать.



## 4. СПОСОБЫ УСТАНОВКИ ТРУБОПРОВОДОВ


#### 4.1. Способы прокладки

Способ монтажа трубопроводов РОСТерм не отличается от традиционных способов монтажа стальных трубопроводов, но дополнительные преимущества системы РОСТерм позволяют прокладывать трубы как открытым способом, так и закрытым.

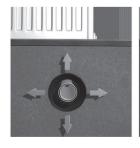

#### Открытый способ



В штробах и в каналах



В полах и в потолках




В стенах (под штукатуркой, в каналах без теплоизоляции)



В декоративных шахтах

#### Закрытый способ









В случае скрытой прокладки трубопровода канал, в который укладываются трубы, должен быть свободным и обеспечивать компенсацию линейного расширения. Стояки должны быть изолированы или защищены гофрированной трубой, оптимально использование пенополиуретановой изоляции и механической защиты трубопровода.

Монтаж, крепление трубопроводных стояков и ответвлений при скрытой прокладке выполняются в зависимости от выбранного типа трубы. Все крепления на стояках должны быть выполнены как жесткие опоры.





**При скрытой прокладке**, обеспечив расположение хомута жесткого крепления перед каждым ответвлением трубы, разрешается пренебрегать линейным расширением в случае использования армированных стекловолокном труб, т. е. устанавливать стояки без компенсационных колен. В таком случае образующееся линейное расширение между жесткими опорами не оказывает отрицательного воздействия. При этом необходимо следить за тем, чтобы расстояние между неподвижными опорами на стояках не превышало 3 метров.

**При скрытой прокладке неармированных труб для систем горячего водоснабжения** необходимо обеспечить достаточное пространство для упругого изгиба в соответствии с линейным расширением стояка. Это можно сделать за счет оптимального расположения стояка в шахте, организации упругого изгиба ответвления за счет увеличения соответствующего диаметра проходного сечения через перекрытия.

**При прокладке труб под штукатуркой или в полу** линейное расширение, как правило, не принимается во внимание. Изоляция укладываемого трубопровода выполняется в соответствии с описанными выше способами, что обеспечивает трубе достаточное пространство для расширения. В случае ошибки в расчетах линейного расширения и неправильного выбора мероприятий по его компенсации возникающее напряжение остаточного линейного расширения воспринимается материалом.

**При прокладке полипропиленовых труб открытым способом** технология монтажа не отличается от технологии монтажа стальных трубопроводов и основное внимание отводится внешнему виду и прямолинейности готовых трубопроводов. Добиться этого можно при использовании в системах горячего водоснабжения и отопления армированных стекловолокном труб, компенсацию которых возможно осуществить посредством организации меньших компенсационных расстояний. В таком случае правильно установленные жесткие крепления на трубопроводе переведут создающиеся напряжения при линейном расширении в стенки трубопровода.

#### 4.2. Общие инструкции к монтажу

#### При монтаже трубопроводов системы РОСТерм необходимо соблюдать следующие правила:

- 1. Для монтажа допустимо использовать только предварительно подготовленные, небракованные и неповрежденные изделия.
- 2. Обеспечить определенные мероприятия по монтажу труб и фитингов при температуре не ниже 0 °C.
- 3. Не допускать механических повреждений труб и фитингов в процессе хранения и транспортировки. Это правило особенно следует соблюдать при работе с трубами, армированными стекловолокном.
- 4. Не допускается прямого взаимодействия труб и фитингов с открытым огнем.
- 5. Соблюдать правила при гомогенной сварке системы РОСТерм.
- 6. Для резьбовых соединений необходимо использовать оригинальные резьбовые фитинги. Для уплотнения резьбовых соединений использовать специальные уплотняющие материалы.
- 7. Запрещается нарезать резьбу на полипропиленовых фитингах и трубах.
- 8. Избегать сварочных работ вблизи соединения металлического трубопровода с полипропиленовыми трубами.

#### 4.3. Линейное расширение

Пластиковые трубопроводы наравне со стальными трубопроводами подвержены тепловому линейному расширению. Основной величиной для расчета линейного расширения является разница между рабочей температурой протекающей жидкости и температурой монтажа.

Таблица  $N^{\circ}$  2. Сравнительная таблица коэффициентов линейного расширения

| Материал                                  | Коэффициент линейного расширения |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| Сталь                                     | 0,010                            |  |  |  |
| Медь                                      | 0,020                            |  |  |  |
| Металлопластик                            | 0,030                            |  |  |  |
| Полипропилен, армированный фольгой        | 0,030                            |  |  |  |
| Полипропилен, армированный стекловолокном | 0,035                            |  |  |  |
| ПВХ                                       | 0,120                            |  |  |  |
| PE-X                                      | 0,150                            |  |  |  |
| Полипропилен                              | 0,150                            |  |  |  |

<sup>\*</sup>Для труб POCTерм PP-RCT FRP и POCTерм Aqua SDR 6.

#### Линейное расширение трубопровода рассчитывается по следующей формуле

$$\Delta I = \alpha \times L \times \Delta t$$

| Nº | Значение                                                      | Величина      |
|----|---------------------------------------------------------------|---------------|
| ΔΙ | Линейное расширение                                           | ММ            |
|    | Коэффициент линейного расширения для труб                     | 0,15 мм/м °С  |
| α  | Коэффициент линейного расширения для FRP-труб и Aqua SDR 6*   | 0,035 мм/м °С |
| L  | Длина компенсационного отрезка трубы                          | М             |
| Δτ | Разница между рабочей температурой и температурой при монтаже | °C            |

<sup>\*</sup>Для труб РОСТерм PP-RCT FRP и РОСТерм Aqua SDR 6.

Приведенные ниже таблицы и графики позволяют определить величину линейного расширения, не пользуясь при этом формулой расчета.

#### Диаграмма линейного расширения для неармированных труб

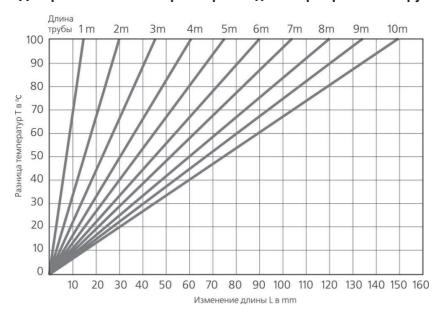



Таблица  $N^{\circ}$  3. Таблица линейного расширения в зависимости от температуры и длины отрезка трубы

| Длина трубы, | , Разница температур ΔT, °C |       |       |       |       |       |        |        |  |  |
|--------------|-----------------------------|-------|-------|-------|-------|-------|--------|--------|--|--|
| M            | 10                          | 20    | 30    | 40    | 50    | 60    | 70     | 80     |  |  |
| 0,1          | 0,15                        | 0,30  | 0,45  | 0,60  | 0,75  | 0,90  | 1,05   | 1,20   |  |  |
| 0,2          | 0,30                        | 0,60  | 0,90  | 1,20  | 1,50  | 1,80  | 2,10   | 2,40   |  |  |
| 0,3          | 0,45                        | 0,90  | 1,35  | 1,80  | 2,25  | 2,70  | 3,15   | 3,60   |  |  |
| 0,4          | 0,60                        | 1,20  | 1,80  | 2,40  | 3,00  | 3,60  | 4,20   | 4,80   |  |  |
| 0,5          | 0,75                        | 1,50  | 2,25  | 3,00  | 3,75  | 4,50  | 5,25   | 6,00   |  |  |
| 0,6          | 0,90                        | 1,80  | 2,70  | 3,60  | 4,50  | 5,40  | 6,30   | 7,20   |  |  |
| 0,7          | 1,05                        | 2,10  | 3,15  | 4,20  | 5,25  | 6,30  | 7,35   | 8,40   |  |  |
| 0,8          | 1,20                        | 2,40  | 3,60  | 4,80  | 6,00  | 7,20  | 8,40   | 9,60   |  |  |
| 0,9          | 1,35                        | 2,70  | 4,05  | 5,40  | 6,75  | 8,10  | 9,45   | 10,80  |  |  |
| 1,0          | 1,50                        | 3,00  | 4,50  | 6,00  | 7,50  | 9,00  | 10,50  | 12,00  |  |  |
| 2,0          | 3,00                        | 6,00  | 9,00  | 12,00 | 15,00 | 18,00 | 21,00  | 24,00  |  |  |
| 3,0          | 4,50                        | 9,00  | 13,50 | 18,00 | 22,50 | 27,00 | 31,50  | 36,00  |  |  |
| 4,0          | 6,00                        | 12,00 | 18,00 | 24,00 | 30,00 | 36,00 | 42,00  | 48,00  |  |  |
| 5,0          | 7,50                        | 15,00 | 22,50 | 30,00 | 37,50 | 45,00 | 52,50  | 60,00  |  |  |
| 6,0          | 9,00                        | 18,00 | 27,00 | 36,00 | 45,00 | 54,00 | 63,00  | 72,00  |  |  |
| 7,0          | 10,50                       | 21,00 | 31,50 | 42,00 | 52,50 | 63,00 | 73,50  | 84,00  |  |  |
| 8,0          | 12,00                       | 24,00 | 36,00 | 48,00 | 60,00 | 72,00 | 84,00  | 96,00  |  |  |
| 9,0          | 13,50                       | 27,00 | 40,50 | 54,00 | 67,50 | 81,00 | 94,50  | 108,00 |  |  |
| 10,0         | 15,00                       | 30,00 | 45,00 | 60,00 | 75,00 | 90,00 | 105,00 | 120,00 |  |  |

#### Диаграмма линейного расширения для труб POCTepm FRP и AQUA

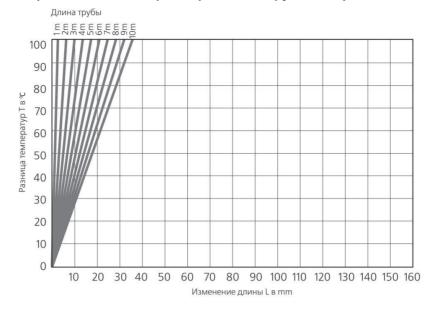



Таблица  $N^{o}$  4. Таблица линейного расширения в зависимости от температуры и длины отрезка трубы

| Длина    | Разница температур ΔT, °C |      |       |       |       |       |       |       |       |       |
|----------|---------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| трубы, м | 10                        | 20   | 30    | 40    | 50    | 60    | 70    | 80    | 90    | 100   |
| 0,1      | 0,04                      | 0,07 | 0,11  | 0,14  | 0,18  | 0,21  | 0,25  | 0,28  | 0,32  | 0,35  |
| 0,2      | 0,07                      | 0,14 | 0,21  | 0,28  | 0,35  | 0,42  | 0,49  | 0,56  | 0,63  | 0,70  |
| 0,3      | 0,11                      | 0,21 | 0,32  | 0,42  | 0,53  | 0,63  | 0,74  | 0,84  | 0,95  | 1,05  |
| 0,4      | 0,14                      | 0,28 | 0,42  | 0,56  | 0,70  | 0,84  | 0,98  | 1,12  | 1,26  | 1,40  |
| 0,5      | 0,18                      | 0,35 | 0,53  | 0,70  | 0,88  | 1,05  | 1,23  | 1,40  | 1,58  | 1,85  |
| 0,6      | 0,21                      | 0,42 | 0,63  | 0,84  | 1,05  | 1,26  | 1,47  | 1,68  | 1,89  | 2,10  |
| 0,7      | 0,25                      | 0,49 | 0,74  | 0,98  | 1,23  | 1,47  | 1,72  | 1,96  | 2,21  | 2,45  |
| 0,8      | 0,28                      | 0,56 | 0,84  | 1,12  | 1,40  | 1,68  | 1,96  | 2,24  | 2,52  | 2,80  |
| 0,9      | 0,32                      | 0,63 | 0,95  | 1,26  | 1,58  | 1,89  | 2,21  | 2,52  | 2,84  | 3,15  |
| 1,0      | 0,35                      | 0,70 | 1,05  | 1,40  | 1,75  | 2,10  | 2,45  | 2,80  | 3,15  | 3,50  |
| 2,0      | 0,70                      | 1,40 | 2,10  | 2,80  | 3,50  | 4,20  | 4,90  | 5,60  | 6,30  | 7,00  |
| 3,0      | 1,05                      | 2,10 | 3,15  | 4,20  | 5,25  | 6,30  | 7,35  | 8,40  | 9,45  | 10,50 |
| 4,0      | 1,40                      | 2,80 | 4,20  | 6,50  | 7,00  | 8,40  | 9,80  | 11,20 | 12,60 | 14,00 |
| 5,0      | 1,75                      | 3,50 | 5,25  | 7,00  | 8,75  | 10,50 | 12,25 | 14,00 | 15,75 | 17,50 |
| 6,0      | 2,10                      | 4,20 | 6,30  | 8,40  | 10,50 | 12,60 | 14,70 | 16,80 | 18,90 | 21,00 |
| 7,0      | 2,45                      | 4,90 | 7,35  | 9,80  | 12,25 | 14,70 | 17,15 | 19,60 | 22,05 | 24,50 |
| 8,0      | 2,80                      | 5,60 | 8,40  | 11,20 | 14,00 | 16,80 | 19,60 | 22,40 | 25,20 | 28,00 |
| 9,0      | 3,15                      | 6,30 | 9,45  | 12,60 | 15,75 | 18,90 | 22,05 | 25,20 | 28,35 | 31,50 |
| 10,0     | 3,50                      | 7,00 | 10,50 | 14,00 | 17,50 | 21,00 | 24,50 | 28,00 | 31,50 | 35,00 |

#### 4.4. Компенсация линейного расширения

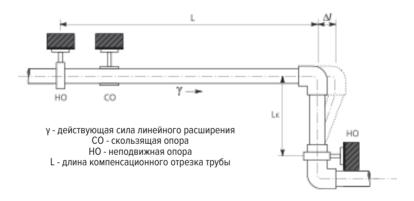
В тех случаях, когда самокомпенсация трубопровода невозможна за счет более частого крепежа или существующей архитектуры здания, зная линейное расширение, можно рассчитать и применить специальные компенсаторы:

Г-образный компенсатор

П-образный компенсатор

Предварительное натяжение

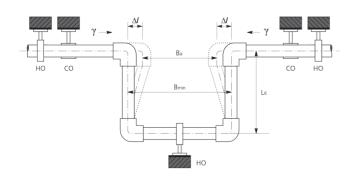
Петлеобразный компенсатор


#### Г-образный компенсатор

Минимальная длина гибкого компенсатора рассчитывается по следующей формуле:

$$L_{K} = K\sqrt{d\Delta I}$$

| Обозначение    | Определение                                                   | Величина |
|----------------|---------------------------------------------------------------|----------|
| L <sub>k</sub> | Минимальная длина гибкого компенсатора                        | ММ       |
| K              | Константа материала                                           | 15*/25*  |
| d              | Нужный диаметр трубопровода                                   | ММ       |
| ΔΙ             | Линейное расширение                                           | ММ       |
| Δt             | Разница между рабочей температурой и температурой при монтаже | °C       |


<sup>\* 15</sup> для труб, армированных стекловолокном, 25 для однослойных труб PP-R.



#### П-образный компенсатор

П-образный компенсатор является составным из двух Г-образных компенсаторов, поэтому минимальная длина гибкого компенсатора рассчитывается так же, как и для Г-образного компенсатора, а минимальная ширина П-образного компенсатора рассчитывается по следующей формуле:

$$B_{min} = 2\Delta I + B_{a}$$



| Обозначение      | Определение                    | Величина |
|------------------|--------------------------------|----------|
| B <sub>min</sub> | Ширина компенсационного колена | ММ       |
| ΔΙ               | Линейное расширение            | ММ       |
| B <sub>a</sub>   | Безопасное расстояние          | 150 мм   |

#### Компенсация с предварительным натяжением

Использование предварительного натяжения в компенсаторе и в условиях нехватки места позволяет уменьшить ширину гибкого компенсатора В<sub>тіп</sub>, при этом обеспечив равномерность внешнего вида компенсатора.

Длина гибкого компенсатора с предварительным натяжением рассчитывается по следующей формуле:

$$L_{sv} = K \sqrt{d\Delta I/2}$$

| Обозначене      | Определение                                             | Величина |
|-----------------|---------------------------------------------------------|----------|
| L <sub>sv</sub> | Длина гибкого компенсатора с предварительным натяжением | ММ       |
| К               | Константа материала                                     | ММ       |
| d               | Нужный диаметр трубопровода                             | ММ       |
| ΔΙ              | Линейное расширение                                     | ММ       |

#### Петлеобразный компенсатор

В тех случаях, когда самокомпенсация трубопровода невозможна за счет более частого крепежа или существующей архитектуры здания, зная линейное расширение, можно рассчитать и применить петлеобразные компенсаторы. Компенсирующая способность в зависимости от диаметра приведена в табл. 13.

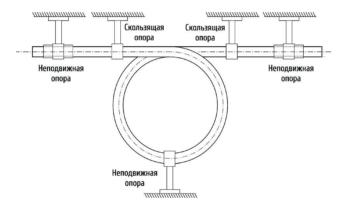


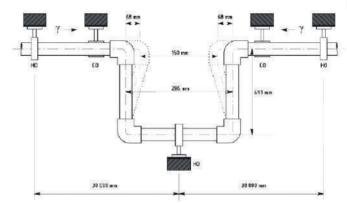

Таблица  $N^{\circ}$  5. Компенсирующая способность петлеобразных компенсаторов

| Наружный диаметр трубы, мм     | 16    | 20 | 25    | 32 | 40 |
|--------------------------------|-------|----|-------|----|----|
| Компенсирующая способность, мм | 85–90 | 80 | 65–70 | 55 | 45 |

#### Пример расчета линейного расширения и компенсатора:

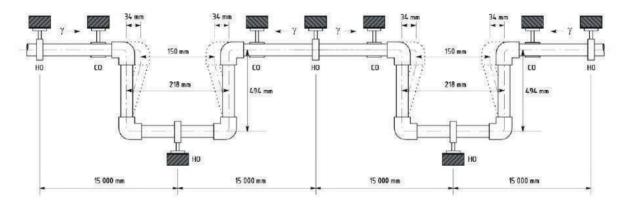
#### Задача 1

Необходимо рассчитать минимальные размеры П-образного компенсатора для полипропиленовой трубы, армированной стекловолокном, РОСТерм Aqua. Длина расчетного участка 60 м, рабочая температура в системе 65 °C.


| Величина                                                         | Обозначение | Значение | Величина |
|------------------------------------------------------------------|-------------|----------|----------|
| Коэффициент линейного расширения для армированных труб           | α           | 0,035    | мм/м °C  |
| Длина компенсационного отрезка трубы                             | L           | 60       | м        |
| Наружный диаметр трубопровода                                    | d           | 32       | мм       |
| Разница между рабочей температурой<br>и температурой при монтаже | Δt          | 65       | °C       |

Решение: Определяем линейное расширение, образующееся на участке 60 м:  $\Delta I = 0.035 \times 60 \times 65 = 136$  мм.

В качестве типа компенсатора используем П-образный компенсатор. Для этого разбиваем П-образный компенсатор на два Г-образных компенсатора, получив при этом длину компенсационного отрезка трубы, равную 30 м, и, соответственно, образующееся на этом отрезке линейное расширение 68 мм.


Тогда, 
$$L_k$$
 = K x  $\sqrt{32}$  x 68 = 699 мм,  $B_{min}$  = 150 + 2 x 68 = 286 мм.

Полученные данные определяют размеры П-образного компенсатора, равные: 699 x 286 мм.



Если архитектура здания не позволяет установить данный компенсатор, то следует увеличивать количество компенсаторов, уменьшая их размеры. Для этого разбиваем прямолинейный участок на два при помощи неподвижной опоры. После чего рассчитываем на каждый из полученных участков П-образный компенсатор, состоящий из 4 Г-образных компенсаторов с компенсационными отрезками 15 м.

Тогда 
$$\Delta I = 0.035 \times 60/4 \times 65 = 34$$
 мм,  
 $L_k = K \times \sqrt{32} \times 34 = 494$  мм,  
 $B_{min} = 150 + 2 \times 34 = 218$  мм.



Полученные данные определяют размеры П-образного компенсатора, равные: 494 х 218 мм.

#### 4.5. Способы крепления

Монтаж трубопроводов системы РОСТерм должен осуществляться с учетом линейных расширений, особенностей материала и соединений. В креплении трубопровода используются скользящие (СО) и неподвижные опоры (НО).

Установка неподвижных опор необходима для жесткой фиксации трубопровода, в качестве неподвижных опор можно использовать хомуты с гайкой и резинкой, крепление которых происходит при помощи шпильки, самореза или анкера. Существует несколько вариантов установки неподвижных опор:

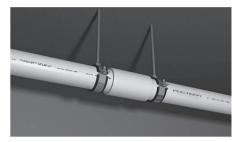


1. В местах поворота трубопровода



2. В местах ответвления трубопровода




3. На прямых отрезках при помощи установки жестких хомутов



4. В местах присоединения арматуры



5. Между двумя фасонными изделиями



6. При помощи двух хомутов и одного фитинга

Установка подвижных опор обеспечивает свободное движение трубы на компенсируемых участках трубопровода, в качестве подвижной опоры можно использовать крепление-клипсу или свободно затянутый хомут. Установка подвижных опор осуществляется следующим образом:



На прямых отрезках трубопровода при помощи установки клипс и незатянутых хомутов



На подвесных хомутах



Укладка трубопровода в свободный желоб

#### Расстояние между опорами при горизонтальной прокладке трубопровода (СП 40-101-96)

| Номинальный наружный<br>диаметр трубы, мм | Расстояние, мм |       |       |       |       |       |       |
|-------------------------------------------|----------------|-------|-------|-------|-------|-------|-------|
|                                           | 20 °C          | 30 °C | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C |
| 16                                        | 500            | 500   | 500   | 500   | 500   | 500   | 500   |
| 20                                        | 600            | 600   | 600   | 600   | 550   | 500   | 500   |
| 25                                        | 750            | 750   | 700   | 700   | 650   | 600   | 550   |
| 32                                        | 900            | 900   | 800   | 800   | 750   | 700   | 650   |
| 40                                        | 1050           | 1000  | 900   | 900   | 850   | 800   | 750   |
| 50                                        | 1200           | 1200  | 1100  | 1100  | 1000  | 950   | 900   |
| 63                                        | 1400           | 1400  | 1300  | 1300  | 1150  | 1150  | 1000  |
| 75                                        | 1500           | 1500  | 1400  | 1400  | 1250  | 1150  | 1100  |
| 90                                        | 1600           | 1600  | 1500  | 1500  | 1400  | 1250  | 1200  |

При проектировании вертикальных трубопроводов опоры устанавливаются не реже чем через 1000 мм для труб с наружным диаметром до 32 мм и не реже чем через 1500 мм для труб большого диаметра.

#### 4.6. Теплоизоляция трубопроводов

«Тепловую изоляцию следует предусматривать для трубопроводов систем отопления, прокладываемых в неотапливаемых помещениях, в местах, где возможно замерзание теплоносителя, в искусственно охлаждаемых помещениях, а также для предупреждения ожогов и конденсации влаги...» (СП 60.13330.2012; СП 61.13330.2012; СП 31.13330.2010).

Трубы и фасонные изделия РОСТерм обладают существенно более высокой степенью самоизоляции (коэффициент теплопроводности PP-R составляет 0,15 Вт/м х K), благодаря чему требуется существенно меньшее количество теплоизоляционных материалов в сравнении с металлическими трубами.

## 5. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ

#### 5.1. Гидравлический расчет

Гидравлический расчет систем холодного, горячего водоснабжения и отопления основывается на основном уравнении Бернулли:

$$\Delta h = \Delta h_1 + \Delta h_m$$

$$\Delta h = \lambda I/d \times V^2/2g + \zeta \times V^2/2g$$

$$\Delta h_1 = \lambda I/d \times V^2/2g$$

$$\Delta h_m = \zeta \times V^2/2g$$

Δh — сумма потерь давления,

Δh, — потери по длине трубопровода,

 $\Delta h_m$  — местные потери,

λ — коэффициент сопротивления трения по длине,

I — длина трубопровода,

d — диаметр трубопровода,

V — скорость движения жидкости,

q — ускорение силы тяжести (9,81 м/ $c^2$ ),

ζ — коэффициент местного сопротивления.

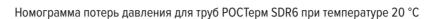
Расчет начинается с определения расхода жидкости на каждом участке трубопровода. Далее для определения диаметра трубы необходимо знать значение скорости потока, как показывает практика, экономически выгодным является значение около 1 м/с.

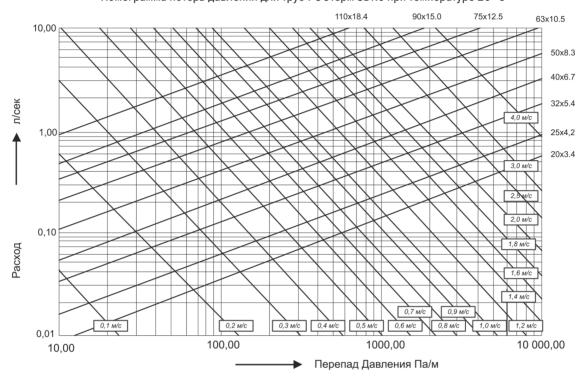
#### Однако максимальное значение допускается:

- для холодного и горячего водоснабжения, согласно СП 30.13330.2020, не более 3 м/с;
- для систем отопления это значение, согласно СП 60.13330.2020, принимается в зависимости от допустимого эквивалентного уровня звука в помещении:
  - 1. выше 40 дБА не более 1,5 м/с в общественных зданиях и помещениях; не более 2 м/с в административно-бытовых зданиях и помещениях; не более 3 м/с в производственных зданиях и помещениях;
  - 2.40 дБА и ниже по таблице.

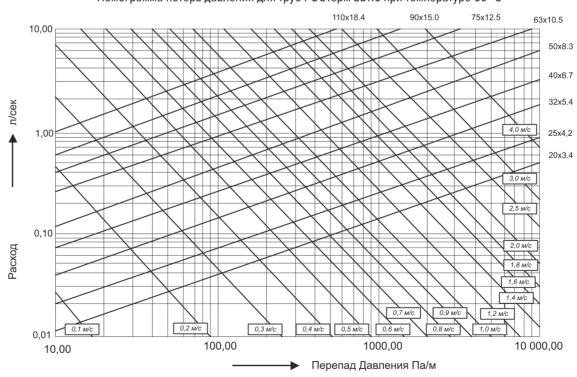
| Допустимый<br>эквивалентный | Допустимая скорость движения воды (м/с) в трубах<br>при коэффициентах местных сопротивлений узла отопительного прибора или стояка с арматурой |         |          |          |           |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|-----------|--|
| уровень шума, дБ            | до 5                                                                                                                                          | 15      | 20       | 30       |           |  |
| 25                          | 1,5/1,5                                                                                                                                       | 1,1/0,7 | 0,9/0,55 | 0,75/0,5 | 0,6/0,4   |  |
| 30                          | 1,5/1,5                                                                                                                                       | 1,5/1,2 | 1,2/1,0  | 1,0/0,8  | 0,85/0,65 |  |
| 35                          | 1,5/1,5                                                                                                                                       | 1,5/1,5 | 1,5/1,1  | 1,2/0,95 | 1,0/0,8   |  |
| 40                          | 1,5/1,5                                                                                                                                       | 1,5/1,5 | 1,5/1,5  | 1,5/1,5  | 1,3/1,2   |  |

#### Примечания:

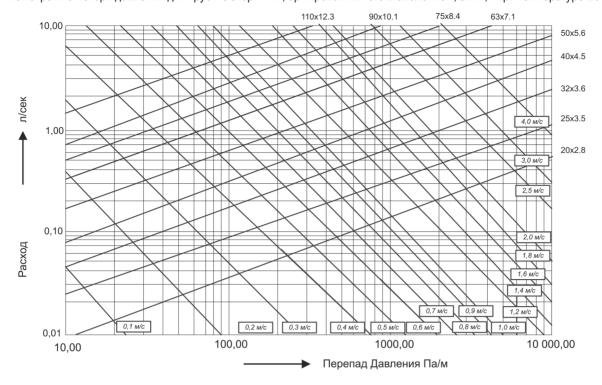

- 1. В числителе приведена допустимая скорость теплоносителя при применении кранов пробочных, трехходовых и двойной регулировки, в знаменателе при применении вентилей.
- 2. Скорость движения воды в трубах, прокладываемых через несколько помещений, следует определять, принимая в расчет:
- а) помещение с наименьшим допустимым эквивалентным уровнем шума;
- б) арматуру с наибольшим коэффициентом местного сопротивления, устанавливаемую на любом участке трубопровода, прокладываемого через это помещение, при длине участка 30 м в обе стороны от помещения.


## Зная расход и максимальную скорость, мы можем с помощью номограмм выбрать необходимый диаметр трубопровода.

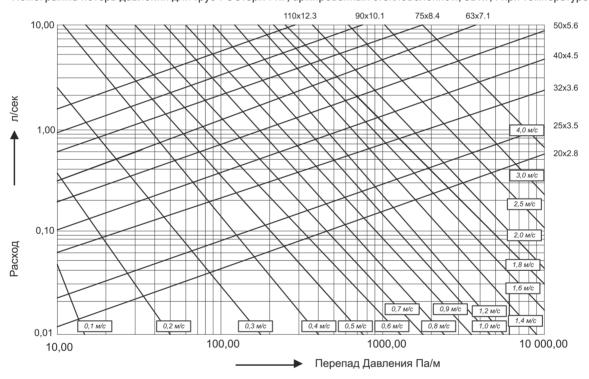
Гидравлический расчет трубопроводов из PP-R и PP-RT заключается в определении потерь напора на преодоление гидравлических сопротивлений, возникающих в трубе, в стыковых соединениях и соединительных деталях, в местах резких поворотов и изменений диаметра трубопровода.


\*СП 40-101-96 Проектирование и монтаж трубопроводов из полипропилена «Рандом сополимер» от 09 1996 № 13/214.

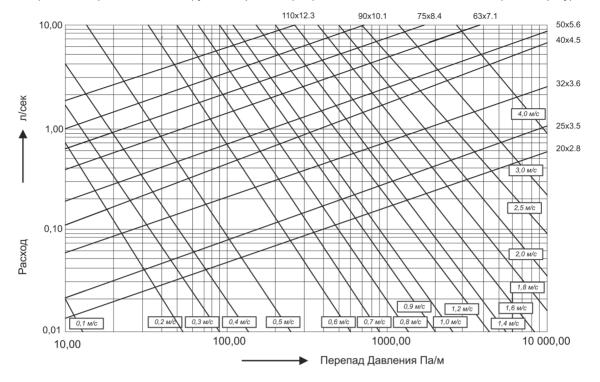
#### Гидравлические потери напора в трубах можно определить по номограммам:







#### Номограмма потерь давления для труб РОСТерм SDR6 при температуре 60 °C




Номограмма потерь давления для труб РОСТерм FRP, армированных стекловолокном, SDR7,4 при температуре 20 °C



#### Номограмма потерь давления для труб РОСТерм FRP, армированных стекловолокном, SDR7,4 при температуре 60 °C



Номограмма потерь давления для труб РОСТерм FRP, армированных стекловолокном, SDR7,4 при температуре 90 °C

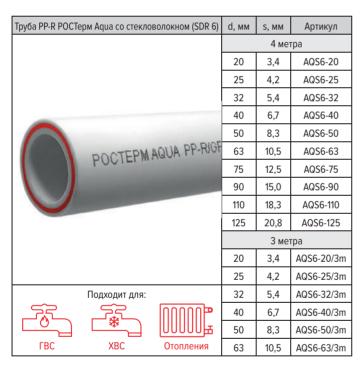


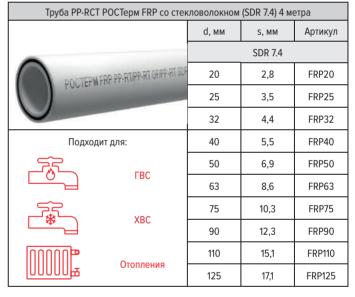
#### КОЭФФИЦИЕНТЫ МЕСТНЫХ СОПРОТИВЛЕНИЙ ДЛЯ ФИТИНГОВ РОСТЕРМ → НАПРАВЛЕНИЕ ПОТОКА

| Название         | Изображение | Условное обозначение | Примечание                              | Значение |  |
|------------------|-------------|----------------------|-----------------------------------------|----------|--|
| Муфта            |             |                      | -                                       | 0,25     |  |
|                  |             |                      | Переход на:                             |          |  |
|                  |             |                      | 1 диаметр                               | 0,40     |  |
|                  |             |                      | 2 диаметра                              | 0,50     |  |
| Муфта переходная |             | <b>→</b> _           | 3 диаметра                              | 0,60     |  |
|                  |             |                      | 4 диаметра                              | 0,70     |  |
|                  |             |                      | 5 диаметров                             | 0,80     |  |
|                  |             |                      | 6 диаметров                             | 0,90     |  |
| Уголок 90°       | 00          | Г                    | -                                       | 1,20     |  |
| Уголок 45°       |             |                      | -                                       | 0,50     |  |
|                  | 00          |                      | Проходной в случае<br>разделения потока | 0,25     |  |
|                  |             | <u> </u>             | Разделение потока                       | 1,20     |  |
| Тройники         |             | <u> </u>             | Слияние потоков                         | 0,80     |  |
|                  |             |                      | Разделение потоков                      | 1,80     |  |
|                  |             |                      | Слияние противоположных<br>потоков      | 3,00     |  |

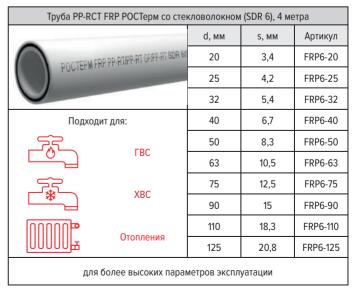
| Название   | Изображение | Условное обозначение | Примечание         | Значение |
|------------|-------------|----------------------|--------------------|----------|
| Крестовина |             | †   _ +   _          | Разделение потоков | 3,70     |
| крестовина |             | +<br>                | Слияние потоков    | 2,10     |

#### **Значения:** редукционные тройники


Значения складываются из соответствующих значений для тройников и редукционных муфт.


| Название                                        | Изображение                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Условное обозначение | Примечание | Значение        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-----------------|
| Муфта комбинированная<br>с внутренней резьбой   | SOCIETY OF THE PROPERTY OF THE |                      | -          | 0,50            |
| Муфта комбинированная<br>с наружой резьбой      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>→<br>            | -          | 0,70            |
| Уголок комбинированный<br>с внутренней резьбой  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -          | 1,40            |
| Уголок комбинированный<br>с наружой резьбой     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>†</b>             | -          | 1,60            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Разделен   | ие потока:      |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 20x3/4"x20 | 1,40            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F♠∃                  | 20x1/2"x20 | 1,60            |
| Тройник комбинированный<br>с внутренней резьбой |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 25x3/4"x25 | 1,60            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 32x1"x32   | 1,60            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 25x1/2"x25 | 1,80            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 32x3/4"x32 | 1,80            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Разделен   | ие потока:<br>Г |
| Тройник комбинированный<br>с наружной резьбой   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u> ↑            | 20x1/2"x20 | 1,80            |

#### 6. НОМЕНКЛАТУРА

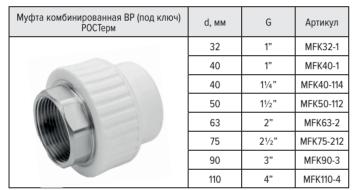

| Труба PP-R POCТерм неармированная (SDR 6) | d, мм | S, MM   | Артикул     |  |
|-------------------------------------------|-------|---------|-------------|--|
|                                           |       | 4 метра |             |  |
|                                           | 20    | 3,4     | PPRS6-20    |  |
|                                           | 25    | 4,2     | PPRS6-25    |  |
|                                           | 32    | 5,4     | PPRS6-32    |  |
|                                           | 40    | 6,7     | PPRS6-40    |  |
|                                           | 50    | 8,3     | PPRS6-50    |  |
| POCTEPM PPR SDR 6/S                       | 63    | 10,5    | PPRS6-63    |  |
| POOLE                                     | 75    | 12,5    | PPRS6-75    |  |
|                                           | 90    | 15,0    | PPRS6-90    |  |
|                                           | 110   | 18,3    | PPRS6-110   |  |
|                                           | 125   | 20,8    | PPRS6-125   |  |
|                                           |       | 3 ме    | тра         |  |
|                                           | 20    | 3,4     | PPRS6-20/3m |  |
|                                           | 25    | 4,2     | PPRS6-25/3m |  |
| Подходит для:                             | 32    | 5,4     | PPRS6-32/3m |  |
|                                           | 40    | 6,7     | PPRS6-40/3m |  |
|                                           | 50    | 8,3     | PPRS6-50/3m |  |
| ΓBC XBC                                   | 63    | 10,5    | PPRS6-63/3m |  |

| Труба PP-R РОСТерм Aqua со стекловолокном (SDR 7.4) | d, мм   | S, MM | Артикул      |
|-----------------------------------------------------|---------|-------|--------------|
|                                                     | 4 метра |       |              |
|                                                     | 20      | 2,8   | AQS7,4-20    |
|                                                     | 25      | 3,5   | AQS7,4-25    |
|                                                     | 32      | 4,4   | AQS7,4-32    |
|                                                     | 40      | 5,5   | AQS7,4-40    |
|                                                     | 50      | 6,9   | AQS7,4-50    |
| POCTEPM AQUA PP-RAP-R                               | 63      | 8,6   | AQS7,4-63    |
| POCIE III                                           | 75      | 10,3  | AQS7,4-75    |
|                                                     | 90      | 12,3  | AQS7,4-90    |
|                                                     | 110     | 15,1  | AQS7,4-110   |
|                                                     | 125     | 17,1  | AQS7,4-125   |
|                                                     |         | 3 м   | етра         |
|                                                     | 20      | 2,8   | AQS7,4-20/3m |
|                                                     | 25      | 3,5   | AQS7,4-25/3m |
| Подходит для:                                       | 32      | 4,4   | AQS7,4-32/3m |
|                                                     | 40      | 5,5   | AQS7,4-40/3m |
|                                                     | 50      | 6,9   | AQS7,4-50/3m |
| ГВС XBC                                             | 63      | 8,6   | AQS7,4-63/3m |

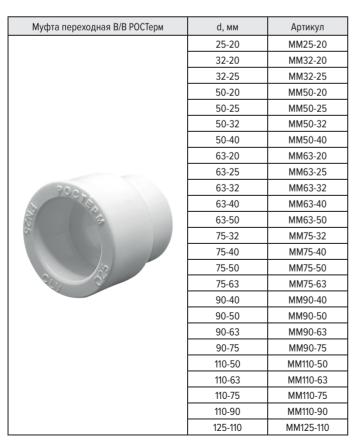




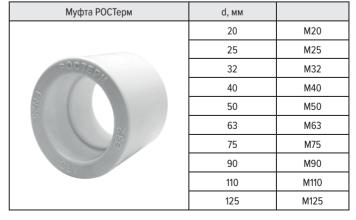




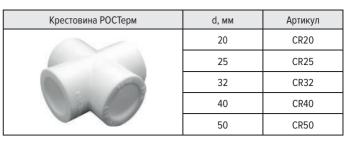




| Кран шаровой РОСТерм | d, MM | Артикул |
|----------------------|-------|---------|
|                      | 20    | SHK20   |
|                      | 25    | SHK25   |
|                      | 32    | SHK32   |
|                      | 40    | SHK40   |
|                      | 50    | SHK50   |
|                      | 63    | SHK63   |
|                      | 75    | SHK75   |
|                      | 90    | SHK90   |




| Муфта комбинированная НР РОСТерм | d, мм | G    | Артикул |
|----------------------------------|-------|------|---------|
|                                  | 20    | 1/2" | MM20-12 |
|                                  | 20    | 3/4" | MM20-34 |
|                                  | 25    | 1/2" | MM25-12 |
| and the second                   | 25    | 3/4" | MM25-34 |
|                                  | 32    | 1"   | MM32-1  |
|                                  | 32    | 1/2" | MM32-12 |
|                                  | 32    | 3/4" | MM32-34 |
|                                  | 40    | 1"   | MM40-1  |












| Тройник переходной 90° РОСТерм | d, мм       | Артикул      |
|--------------------------------|-------------|--------------|
|                                | 20-25-20    | T20-25-20    |
|                                | 25-20-20    | T25-20-20    |
|                                | 25-20-25    | T25-20-25    |
|                                | 25-25-20    | T25-25-20    |
|                                | 32-20-32    | T32-20-32    |
|                                | 32-25-32    | T32-25-32    |
|                                | 40-20-40    | T40-20-40    |
|                                | 40-25-40    | T40-25-40    |
|                                | 40-32-40    | T40-32-40    |
|                                | 50-20-50    | T50-20-50    |
|                                | 50-25-50    | T50-25-50    |
|                                | 50-32-50    | T50-32-50    |
|                                | 50-40-50    | T50-40-50    |
|                                | 63-20-63    | T63-20-63    |
|                                | 63-25-63    | T63-25-63    |
| 773                            | 63-32-63    | T63-32-63    |
| Fact                           | 63-40-63    | T63-40-63    |
|                                | 63-50-63    | T63-50-63    |
|                                | 75-25-75    | T75-25-75    |
|                                | 75-32-75    | T75-32-75    |
|                                | 75-40-75    | T75-40-75    |
|                                | 75-50-75    | T75-50-75    |
|                                | 75-63-75    | T75-63-75    |
|                                | 90-32-90    | T90-32-90    |
|                                | 90-40-90    | T90-40-90    |
|                                | 90-50-90    | T90-50-90    |
|                                | 90-63-90    | T90-63-90    |
|                                | 90-75-90    | T90-75-90    |
|                                | 110-40-110  | T110-40-110  |
|                                | 110-50-110  | T110-50-110  |
|                                | 110-63-110  | T110-63-110  |
|                                | 110-75-110  | T110-75-110  |
|                                | 110-90-110  | T110-90-110  |
|                                | 125-110-125 | T125-110-125 |





| Фильтр сетчатый косой РОСТерм | d, мм | Артикул |
|-------------------------------|-------|---------|
|                               | 20    | F20     |
|                               | 25    | F25     |
|                               | 32    | F32     |
|                               | 40    | F40     |
|                               | 50    | F50     |

| Компенсатор РОСТерм | d, мм | Артикул |
|---------------------|-------|---------|
|                     | 20    | 020     |
|                     | 25    | 025     |
|                     | 32    | 032     |
|                     | 40    | 040     |

| Уголок 45° РОСТерм | d, мм | Артикул |
|--------------------|-------|---------|
|                    | 20    | U45-20  |
|                    | 25    | U45-25  |
|                    | 32    | U45-32  |
|                    | 40    | U45-40  |
| A.                 | 50    | U45-50  |
| 5                  | 63    | U45-63  |
|                    | 75    | U45-75  |
|                    | 90    | U45-90  |
|                    | 110   | U45-110 |
|                    | 125   | U45-125 |

| Уголок 90° РОСТерм | d, мм | Артикул |
|--------------------|-------|---------|
|                    | 20    | U90-20  |
|                    | 25    | U90-25  |
|                    | 32    | U90-32  |
|                    | 40    | U90-40  |
|                    | 50    | U90-50  |
|                    | 63    | U90-63  |
|                    | 75    | U90-75  |
| 4825               | 90    | U90-90  |
|                    | 110   | U90-110 |
|                    | 125   | U90-125 |





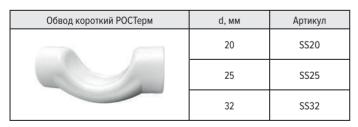
| Планка для смесителя РОСТерм | Резьба | d, мм     | Артикул |
|------------------------------|--------|-----------|---------|
| •                            | BP     | 20 x 1/2" | WF20-12 |
|                              |        | 25 x 1/2" | WF25-12 |
| 00                           | HP     | 20 x 1/2" | WM20-12 |

| Заглушка для сантехнических приборов РОСТерм | Резьба | d, мм | Артикул |
|----------------------------------------------|--------|-------|---------|
|                                              | HP     | 1/2"  | ZF-12   |
|                                              | HP     | 3/4"  | ZF-34   |
|                                              | BP     | 1/2"  | ZM-12   |

| Тройник комбинированный ВР РОСТерм | d, мм   | Артикул |
|------------------------------------|---------|---------|
|                                    | 20-1/2" | TF20-12 |
|                                    | 20-3/4" | TF20-34 |
|                                    | 25-1/2" | TF25-12 |
|                                    | 25-3/4" | TF25-34 |
|                                    | 32-1"   | TF32-1  |
|                                    | 32-1/2" | TF32-12 |
|                                    | 32-3/4" | TF32-34 |

| Тройник комбинированный НР РОСТерм | d, мм   | Артикул |
|------------------------------------|---------|---------|
|                                    | 20-1/2" | TM20-12 |
|                                    | 20-3/4" | TM20-34 |
|                                    | 25-1/2" | TM25-12 |
|                                    | 25-3/4" | TM25-34 |
|                                    | 32-1"   | TM32-1  |
|                                    | 32-1/2" | TM32-12 |
|                                    | 32-3/4" | TM32-34 |

| Уголок с настенным креплением ВР РОСТерм | d, мм     | Артикул  |
|------------------------------------------|-----------|----------|
|                                          | 20 x 1/2" | UWF20-12 |
|                                          | 25 x 1/2" | UWF25-12 |
|                                          | 25 x 3/4" | UWF25-34 |

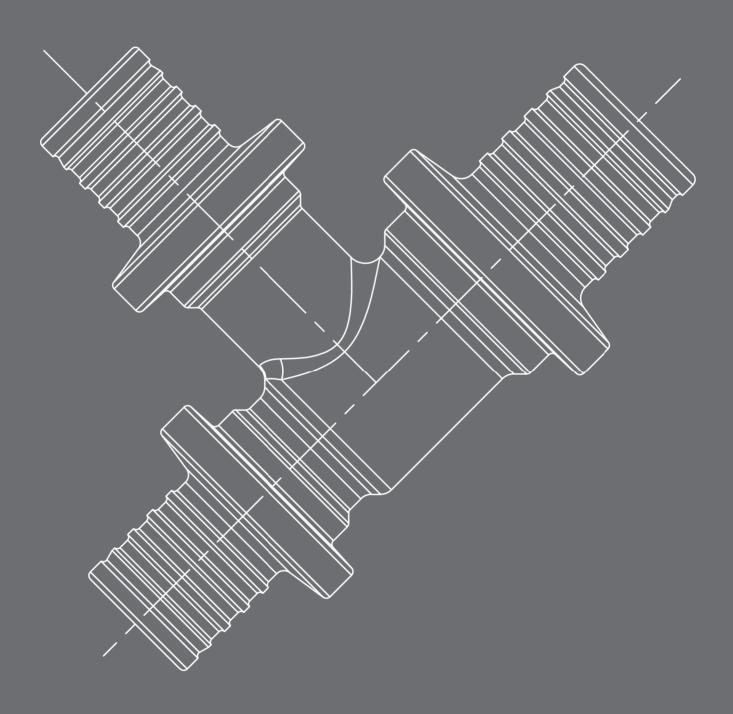

| Уголок с настенным креплением НР РОСТерм | d, мм     | Артикул  |
|------------------------------------------|-----------|----------|
| pour .                                   | 20 x 1/2" | UWM20-12 |
|                                          | 25 x 1/2" | UWM25-12 |
|                                          | 25 x 3/4" | UWM25-34 |



| Американка НР РОСТерм | d, мм      | Артикул   |
|-----------------------|------------|-----------|
|                       | 20 x 1/2"  | AMM20-12  |
|                       | 25 x 3/4"  | AMM25-34  |
|                       | 32 x 1"    | AMM32-1   |
|                       | 40 x 11/4" | AMM40-114 |
|                       | 50 x 1½"   | AMM50-112 |
|                       | 63 x 2"    | AMM63-2   |



| Втулка под фланец РОСТерм | d, мм | Артикул |
|---------------------------|-------|---------|
|                           | 50    | B50     |
|                           | 63    | B63     |
|                           | 75    | B75     |
|                           | 90    | B90     |
|                           | 110   | B110    |
|                           | 125   | B125    |




| Обвод длинный РОСТерм | d, мм | Артикул |
|-----------------------|-------|---------|
|                       | 20    | SL20    |
|                       | 25    | SL25    |
|                       | 32    | SL32    |
|                       | 40    | SL40    |



| Сварочный аппарат РОСТерм | Мощность | d, мм      | Насадки<br>d, мм | Артикул                 |
|---------------------------|----------|------------|------------------|-------------------------|
|                           | 1500 Вт  | 20–40      | 20–40            | PWM<br>20-40<br>(1500)  |
|                           | 2000 Вт  | 50–<br>110 | 50–75            | PWM<br>50-110<br>(2000) |

## СИСТЕМА ТРУБ ИЗ СШИТОГО ПОЛИЭТИЛЕНА РЕ-X



#### 1. ТРУБЫ ИЗ СШИТОГО ПОЛИЭТИЛЕНА РЕ-Х РОСТЕРМ

#### 1.1. Общая информация

Трубы PE-X — это трубы из сшитого полиэтилена. Молекулы полиэтилена в данном виде труб «сшиваются» друг с другом, в результате чего трубы PE-X приобретают дополнительную прочность, гибкость и «память формы» — способность возвращать первоначальную форму даже при сильных деформациях. Под сшивкой подразумевается создание пространственной решетки в полиэтилене высокой плотности за счет образования объемных поперечных связей между макромолекулами полимера. Относительное количество образующихся поперечных связей в единице объема полиэтилена определяется показателем «степени сшивки».

Эксплуатация труб РЕ-Х может осуществляться при температурах до + 95 градусов. Устойчивость материала труб к химическим воздействиям позволяет транспортировать воду и целый ряд технических жидкостей, что увеличивает область применения трубопроводов.

#### 1.2. Методы сшивки РЕ-Х

#### Компания РОСТерм представляет трубы РЕ-Х двух видов — РЕ-Ха и РЕ-Хь, различающихся по методу сшивки полиэтилена.

- PE-Xa пероксидный метод. Пероксидная сшивка это процесс активного взаимодействия свободных радикалов, появление которых было специально инициировано повышением температуры. Реакция свободных радикалов (молекул со свободной связью) приводит к образованию углерод-углеродных связей между полимерными цепочками. Для получения сшитого полимера по способу А полиэтилен перед экструдированием расплавляется вместе с антиокислителями и пероксидами.
- PE-Xb силановый метод. Применение силанов позволяет получить более гибкий и экономичный процесс сшивания, и эта технология широко применяется для производства труб более 30 лет. Силанольносшитые молекулы в полиэтилене связаны кислородно-кремниевыми «мостиками» Si-O-Si, а не углеродуглеродными связями C-C, образующимися в результате пероксидного метода.

#### Особенности методов сшивки

PE-Xa Выше показатель гибкости (легче монтаж)

PE-Xb Более высокие прочностные характеристики

#### 1.3. Преимущества труб РЕ-Х

К основным преимуществам труб РЕ-Х относится:

- 1. Сшивка образует материал, устойчивый к изломам и обладающий памятью формы.
- 2. Устойчивость к химическому воздействию растворителей, масел, трубы не подвержены зарастанию, коррозии или возникновению старения.
- 3. Материал, используемый в трубах РЕ-Х, эластичен, он амортизирует гидравлический удар (например, когда резко закрывают кран смесителя). По сравнению с обычными металлическими трубами гидравлический удар уменьшается в три раза.
- 4. Высокая степень ударопрочности.
- 5. Трубы не содержат веществ, которые могут повлиять на органолептические свойства (вкус, цвет, запах) воды.
- 6. Повышенная устойчивость к растрескиванию.
- 7. Повышенная прочность на разрыв.

Эти свойства характеризуют трубы PE-X в качестве идеального решения для отопления, систем «теплый пол», систем ГВС или для транспортировки агрессивных жидкостей. Сшитые полиэтиленовые трубы изготавливаются в соответствии с ГОСТ 32415-2013.

#### 1.4. Характеристики труб РЕ-Х РОСТерм

#### Значения основных характеристик труб РОСТерм

| Характеристики                                                               |                       | Значение |
|------------------------------------------------------------------------------|-----------------------|----------|
| Коэффициент линейного                                                        | о расширения, мм/м °C | 0,15     |
| Коэффициент теплоп                                                           | роводности, Вт/м °C   | 0,35     |
| Шероховатость внутре                                                         | нней поверхности, мм  | 0,007    |
| Плотность РЕ-Х, г/см <sup>3</sup>                                            |                       | 0,94     |
| Кислородная диффузия для труб с антикислородным барьером, не > г/(м³ x сут)* |                       | 0,1      |
| Максимальная рабочая температура, °С                                         |                       | 95       |
| Максимальная предельная температура, °С                                      |                       | 110      |
| M                                                                            | Размотка бухт         |          |
| Минимальная температура для работы с трубами, °С "                           | Монтаж соединений     | + 10     |
|                                                                              |                       | -40      |
| Степень сшивки, не менее %                                                   |                       | 70/65*** |

<sup>\*</sup>Отвечает требованиям СП 60.13330.2020, предписывающим применять в системах отопления полимерные трубы с показателем кислородопроницаемости не более 0,1 г/(м³ x сут).

## 2. СИСТЕМА РОСТЕРМ «ТЕПЛЫЙ ПОЛ» ИЗ СШИТОГО ПОЛИЭТИЛЕНА

#### 2.1. Характеристика системы

Трубы РОСТерм «Теплый пол» производятся из молекулярно-сшитого полиэтилена РЕ-Х. Сшивка полиэтилена приводит к образованию дополнительных поперечных связей между молекулами, что придает исходному материалу совершенно новые качества, а именно стойкость к воздействию высоких температур, что позволяет применять трубы из сшитого полиэтилена РЕ-Х в системах напольного отопления.

#### Значения основных характеристик труб РОСТерм «Теплый пол»

| Обозначение                   | Наименование                                                      | Значение | Величина          |     |
|-------------------------------|-------------------------------------------------------------------|----------|-------------------|-----|
| T <sub>max</sub>              | Максимальная рабочая температура                                  | 70       | °C                |     |
| Траб                          | Рабочая температура                                               | 20-60    | °C                |     |
|                               | MVD                                                               |          | 16                | бар |
| D                             | Р <sub>тах</sub> Максимальное давление для класса эксплуатации XB | 20 x 2,0 | 13                | бар |
| I                             |                                                                   | 16 x 2,0 | 9,5               | бар |
|                               | Максимальное давление для класса эксплуатации 4 20 x 2,0          |          | 8,4               | бар |
| $\rho_{\scriptscriptstyle 1}$ | Плотность PE-X                                                    | 0,94     | Γ/CM <sup>3</sup> |     |
| $\rho_2$                      | Плотность EVOH                                                    | 1,19     | г/см³             |     |

<sup>&</sup>lt;sup>\*</sup>В соответствии с СП 41-109-2005.

<sup>\*\*\*</sup> Степень сшивки, не менее %, для труб PE-Xa/PE-Xb.

#### 2.2. Компенсация линейного расширения

Линейное расширение — изменение линейных размеров и формы тела при изменении его температуры. В случае напольного отопления трубы могут менять свои размеры при изменении температуры теплоносителя, учитывая жесткую фиксацию труб в теле стяжки, возникающее напряжение распределяется по толщине стенки трубы. В связи с этим не требуется организации дополнительных мероприятий по компенсации возникающего линейного расширения.

#### 2.3. Преимущества системы РОСТерм «Теплый пол»

- Наиболее комфортное и равномерное распределение тепла в помещении.
- Экономия тепловой энергии за счет низкой температуры теплоносителя и эффекта саморегуляции достигает 30%.
- Все элементы системы скрыты существуют новые возможности в дизайне и оформлении интерьеров.
- Водяное отопление, в отличие от электрического, не создает электромагнитного излучения, вредного для здоровья человека.

#### 2.4. Общие рекомендации по проектированию системы РОСТерм «Теплый пол»

Теплоотдача — перенос теплоты через ограждающую конструкцию от взаимодействующей с ней среды с более высокой температурой к среде с другой стороны конструкции с более низкой температурой (СП 23-101-2004).

#### Монтажу системы напольного отопления предшествует разработка технического проекта, в котором должны содержаться:

- расчеты теплопотерь каждого помещения (теплотехнический расчет);
- расчеты гидравлических параметров системы (гидравлический расчет);
- чертеж (схема укладки контуров);
- спецификация материалов и оборудования.

#### В процессе проектирования системы напольного отопления определяются следующие параметры:

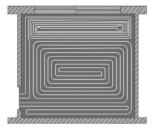
- диаметр трубы, шаг и глубина укладки;
- длина отопительного контура;
- конфигурация контура;
- температура теплоносителя.

Проектировать контуры напольного отопления следует таким образом, чтобы направить поток горячего теплоносителя в наиболее холодные помещения— к наружным стенам, окнам, входным дверям. Желательно каждое помещение отапливать отдельной петлей, большие помещения— несколькими петлями.

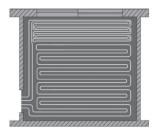
При расчете системы напольного отопления необходимо учитывать конструкцию пола, в которой будет установлена система, материал покрытия пола. В общей сложности теплоотдача, приходящаяся на каждый градус разницы между средней температурой поверхности пола и температурой воздуха в комнате, равна 11,5 Вт/м². В хорошо утепленных современных домах в самое холодное время года отопительная нагрузка равна 50–60 Вт/м². Иными словами, для поддержания температуры в помещении 20 °C при отопительной нагрузке на пол 50–60 Вт/м² температура поверхности пола должна быть на 4,5–5,5 °C выше температуры воздуха в комнате.

Над системой напольного отопления можно устанавливать практически любое покрытие пола, следует только учитывать, что разные материалы обладают разными свойствами.

#### **Теплотехнические показатели материалов**\*


| Наименование покрытия  | Толщина слоя<br>d, мм | Теплопроводность<br>Вт/мК | Сопротивление<br>теплопередаче R, мК/Вт | Общая толщина слоя<br>d, мм | Теплопроводность материалов<br>относительно теплопроводности паркета* |
|------------------------|-----------------------|---------------------------|-----------------------------------------|-----------------------------|-----------------------------------------------------------------------|
| Текстиль               | 10                    | 0,07                      | 0,15                                    | 10                          | 3,5*к                                                                 |
| Паркет                 | 8                     | 0,02                      | 0,04                                    | 10                          | к                                                                     |
| Клей                   | 2                     | 0,02                      | 0,01/0,05                               | 10                          | к                                                                     |
| Искусственный материал | 5                     | 0,23                      | 0,022                                   | 5                           | 11,5*ĸ                                                                |
| Керамическая плитка    | 10                    | 1                         | 0,01                                    | 12                          | 50*κ                                                                  |
| Мастика                | 2                     | 1,4                       | 0,001/0,011                             |                             | 70*к                                                                  |
| Керамическая плитка    | 10                    | 1                         | 0,01                                    | 20                          | 50*κ                                                                  |
| Раствор                | 10                    | 1,4                       | 0,007/0,017                             |                             | 70*к                                                                  |
| Камень (мрамор)        | 15                    | 3,5                       | 0,004                                   | 25                          | 175*ĸ                                                                 |
| Раствор                | 10                    | 1,4                       | 0,007/0,011                             |                             | 70*κ                                                                  |

<sup>\*</sup>B соответствии с СП 60.13330.2020, СП 23-101-2004

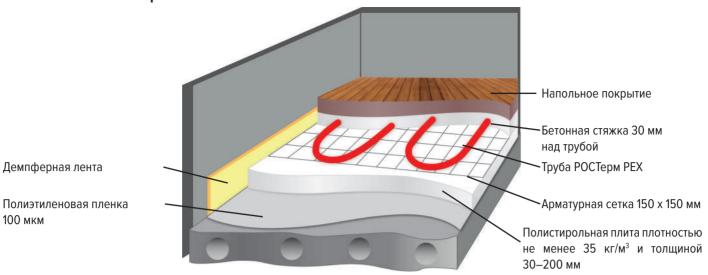

#### 2.5. Способы укладки труб РОСТерм «Теплый пол» из сшитого полиэтилена

Существует несколько схем укладки рабочей (греющей) петли: змейка, двойная змейка, спираль и спираль со смещенным центром. При монтаже петли в форме змеевика подачу горячей воды организуют со стороны наружной стены, возле которой теплопотери выше, чем в центре помещения. У такого контура неравномерное распределение тепла. Для того, чтобы это исправить, необходимо монтировать петли в виде двойной змейки или спирали. Области вблизи наружных стен здания называются граничными зонами. Здесь рекомендуется уменьшать шаг укладки трубы для того, чтобы компенсировать потери тепла. Шаг укладки является величиной расчетной, но в любом случае он должен находиться в интервале не более 100–300 мм, в противном случае возникнет неравномерный нагрев поверхности пола.

Расход трубы на 1 м² поверхности пола при шаге 20 см составляет приблизительно 5 погонных метров. В связи с возникающими гидравлическими потерями в контуре петли необходимо предусмотреть максимальную длину контура петли не более 100 м. Таким образом, при шаге укладки 20 см площадь отапливаемого помещения составляет 20 м². Участки большей площади необходимо обогревать несколькими петлями, каждая из которых, в свою очередь, подключается к распределительному коллектору. При наличии водяных теплых полов необязательно учитывать расположение мебели. Шаг укладки трубы зависит от диаметра трубы. Чем больше диаметр, тем больше расстояние между осями труб. Как правило, трубы диаметром 20 мм укладывают с шагом 20 см, трубы диаметром 16 мм укладывают с шагом 10 см.



Укладка петель по типу спирали




Укладка петель двойной змейкой

#### 2.6. Порядок монтажа

- 1. Производится разбивка помещения на участки (поля). Количество полей зависит от площади помещения и его геометрии. Максимальная площадь поля составляет 40 м.
- 2. Затем на предварительно очищенное основание укладывается полиэтиленовая пленка 80–100 мкм, выполняющая функцию влагоустойчивой изоляции.
- 3. По периметру помещения приклеивается демпферная лента, которая служит компенсатором теплового растяжения бетонной стяжки, т. е. обладает свойством приостанавливать негативное влияние тепла, которое приводит к изменению размеров строительных материалов.
- 4. На слой полиэтиленовой пленки укладывается слой тепловой изоляции. В качестве теплоизоляции может применяться полистирольная плита плотностью не менее 35 кг/м и толщиной 30–200 мм, в зависимости от теплопотерь пола и теплового режима помещения, с целью ограничить потери тепла вниз. Это полистирол-термопласт, который характеризуется высокой твердостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, физиологически безвреден. Также в качестве теплоизоляции могут применяться фольгированные теплоизоляционные материалы, но применение таких материалов возможно только при наличии защитной пленки на алюминии.
- 5. На слой тепловой изоляции укладывается арматурная сетка размерами 150 x 150 x 4 или 100 x 100 x 4 мм (пруток 4–5 мм). Она является основанием, к которому пластиковыми хомутами крепится труба теплого пола с шагом 100–300 мм. Рекомендуемый размер листа (карты) 1000 x 2000 мм.
- 6. Труба PE-X РОСТерм с шагом 100—300 мм и выбранным типом укладки в зависимости от конструктивного решения укладывается на арматурную сетку. Размотку бухт и прокладку труб PE-X и PE-X с кислородным барьером EVOH следует производить при температуре воздуха не ниже 0 °C, в соответствии с СП 41-109-2005 П. 4.1.5. 11. Монтаж соединений труб PE-X и PE-X с кислородным барьером EVOH следует осуществлять при температуре окружающей среды не ниже + 10 °C, в соответствии с СП 41-109-2005 П. 4.3.3.
- 7. После укладки петель теплого пола заливается стяжка. Для устройства стяжки обычно применяют цементно-песчаный раствор или пескобетон М-300. Рекомендуется также добавлять в стяжку пластификатор. Этот препарат уменьшает поверхностное натяжение воды, использующейся для приготовления раствора, и способствует увеличению объемной массы покрытия, что позволяет увеличить его теплопроводность и повышает предел прочности на сжатие.
- 8. Поверх цементно-песчаной стяжки укладывается основное покрытие пола (например, керамическая плитка).

#### Разрез отопительной панели системы «Теплый пол» бетонного типа\*



<sup>\*</sup>Конструкция соответствует СП 29.13330.2011 и чертежам типовых деталей полов 2.144-1/88 (узлы 63, 69, 75, 81, 87), 2.244-1 (узлы 140, 147, 149, 160,161).

#### 2.7. Хранение и транспортировка

- Трубы производятся из экологически чистого сырья. При хранении и эксплуатации трубы не выделяют в окружающую среду токсичных веществ и не оказывают вредного воздействия на человека.
- Хранить трубы в бухтах необходимо на ровной поверхности.
- При хранении, транспортировке и монтаже труб и фитингов следует избегать их контакта с режущими и колющими деталями.
- Неупакованные в защитную пленку или картонную коробку трубы следует хранить в месте, обеспечивающем отсутствие длительного прямого воздействия ультрафиолетовых лучей.

#### 2.8. Определение срока эксплуатации труб

#### Задача 1

Необходимо рассчитать срок службы трубы PE-X SDR 9, эксплуатируемой в системе отопления с рабочим давлением 9,5 бара, для класса эксплуатации 4.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

$$T_{pa63} = T_3 = 60 \, ^{\circ}\text{C},$$

$$T_{pa63} = T_3 = 60 \text{ °C},$$
 $T_{Makc} = T_4 = 70 \text{ °C},$ 
 $T_{abap} = T_5 = 100 \text{ °C}.$ 

Определяем расчетное напряжение в стенке трубы ( $\delta_{o}$ ) из следующего выражения:

$$\delta_0 = P \times S = 0.95 \times 4 = 3.8 \text{ M}\Pi \text{a},$$

S — расчетная серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах T<sub>раб</sub>, Т<sub>макс</sub>, Т<sub>авар</sub> согласно ГОСТ 32415-2013:

 $C_{1,3}$  = 1,5 (коэффициент запаса прочности для  $T_{1,3}$ ),

 $C_4$  = 1,3 (коэффициент запаса прочности для  $T_4$ ),

 $C_{E} = 1$  (коэффициент запаса прочности для  $T_{E}$ ).

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности.

$$\delta_{1-3} = C_1 \times \delta_0 = 1.5 \times 3.8 = 5.7 \text{ M}\Pi \text{a},$$

$$\delta_4 = C_4 \times \delta_0 = 1.3 \times 3.8 = 4.94 \text{ M}\Pi \text{a},$$
  
 $\delta_5 = C_5 \times \delta_0 = 1 \times 3.8 = 3.8 \text{ M}\Pi \text{a}.$ 

$$\delta_{E} = C_{E} \times \delta_{O} = 1 \times 3.8 = 3.8 \text{ M} \Pi \text{a}.$$

Пользуясь графиком изотермы прочности материала PE-X, определяем время  $t_{\text{Da6}}, t_{\text{Make}}, t_{\text{abap}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно

 $T_{\text{pa61}}^{-5} > 900\,\,000$  (100 лет) ч.,  $T_{\text{pa62}} > 900\,\,000$  (100 лет) ч,  $T_{\text{pa63}} = 450\,\,000$  (50 лет) ч.,  $T_{\text{макс}} = 450\,\,000$  (50 лет) ч,  $T_{abap}^{\cdot} = 90 \text{ } 4.$ 

Далее из правила Майнера следует, что если время до разрушения трубы составляет t, (лет) при непрерывном действии температуры Т,, то отношение 1/t, — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha$ ,, то «доля годового повреждения» составляет  $\alpha_{\star}/t_{\star}$ .

T<sub>раб1</sub> = 20 °C — расчетный срок эксплуатации 2,5 года, т. е. время действия данной температуры в течение года составляет  $\alpha_{\star}$  = 5%,

 $T_{pa62}$  = 40 °C — расчетный срок эксплуатации 20 лет, т. е.  $\alpha_2$  = 40%,

 $T_{\text{pag3}} = 60 \, ^{\circ}\text{C}$  — расчетный срок эксплуатации 25 лет, т. е.  $\alpha_3 = 50\%$ ,

 $T_{\text{макс}}^{\text{васс}}$  = 70 °C — расчетный срок эксплуатации 2,5 год, т. е.  $\alpha_{\text{\tiny A}}$  = 5%,

 $T_{\text{авар}}^{\text{300}}$  = 100 °C — расчетный срок эксплуатации 100 часов, т.  $\stackrel{4}{\text{e.}}$   $\alpha_{\text{s}}$  = 0,0228%.

 $\alpha_{_1}$ ,  $\alpha_{_2}$ ,  $\alpha_{_3}$ ,  $\alpha_{_4}$ ,  $\alpha_{_5}$  — время действия температуры

 $(T_1, T_2, T_3, T_4, T_5$  соответственно) в течение года в процентах.

Суммарное повреждение ТҮД (%/час) определяется по формуле:

$$TYD = \sum a_i / t_i$$

TYD = 0.0004258 %/4.

Далее вычисляем Тх по формуле:

$$T_x = 100/TYD$$

 $T_y = 100/0,0004258 = 234850 ч = 26,81 года.$ 

Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 4 срок службы данной трубы 26,81 года с рабочим давлением 9,5 бара.



Необходимо рассчитать срок службы трубы PE-X SDR 11, эксплуатируемой в системе отопления с рабочим давлением 8,4 бара, для класса эксплуатации 4.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

$$T_{pa61} = T_1 = 20 \text{ °C},$$
 $T_{pa62} = T_2 = 40 \text{ °C},$ 
 $T_1 = T_2 = 60 \text{ °C},$ 

 $T_{pa63}^{pa02} = T_3^2 = 60 \text{ °C},$ 

 $T_{\text{MAKC}}^{\text{pags}} = T_{4}^{3} = 70 \text{ °C},$ 

 $T_{abap}^{Makc} = T_5^4 = 100 \text{ °C}$ 



Определяем расчетное напряжение в стенке трубы  $(\delta_a)$  из следующего выражения:

 $\delta_0 = P \times S = 0.84 \times 4.5 = 3.78 \text{ M}\Pi \text{a},$ 

где Р — рабочее давление,

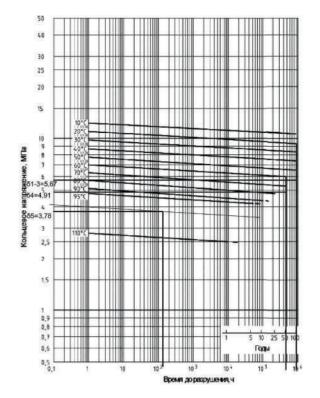
S — расчетная серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах Т<sub>раб</sub>, Т<sub>мак</sub>, Т<sub>явар</sub> согласно ГОСТ 32415-2013:

 $C_{1-3} = 1,5$  (коэффициент запаса прочности для  $T_{1-3}$ ),

 $C_4$  = 1,3 (коэффициент запаса прочности для  $T_4$ ),

 $C_{5} = 1$  (коэффициент запаса прочности для  $T_{5}$ ).


Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:

$$\begin{split} &\delta_{_{1.3}} = C_{_{1}} \times \delta_{_{0}} = 1{,}5 \times 3{,}78 = 5{,}67 \text{ M}\Pi\text{a}, \\ &\delta_{_{4}} = C_{_{4}} \times \delta_{_{0}} = 1{,}3 \times 3{,}78 = 4{,}91 \text{ M}\Pi\text{a}, \\ &\delta_{_{5}} = C_{_{5}} \times \delta_{_{0}} = 1 \times 3{,}78 = 3{,}78 \text{ M}\Pi\text{a}. \end{split}$$

Пользуясь графиком изотермы прочности материала РЕХ, определяем время  $t_{\text{раб}},\,t_{\text{макс}},\,t_{\text{авар}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_{\text{1.3}},\,\delta_{\text{4}},\,\delta_{\text{5}}.$ 

$$T_{\rm pa61}^{}>900\,\,000\,\,(50\,\,{\rm лет})$$
 ч.,  $T_{\rm pa62}^{}>900\,\,000\,\,(50\,\,{\rm лет})$  ч.,  $T_{\rm makc}^{}=450\,\,000\,\,(50\,\,{\rm лет})$  ч.,  $T_{\rm makc}^{}=450\,\,000\,\,(50\,\,{\rm лет})$  ч.,  $T_{\rm makc}^{}=140\,\,{\rm ч}.$ 

Далее из правила Майнера следует, что если время до разрушения трубы составляет  $t_1$  (лет) при непрерывном действии температуры  $T_1$ , то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha_1$ , то «доля годового повреждения» составляет  $\alpha_1/t_1$ .



 $T_{pa61}$  = 20 °C — расчетный срок эксплуатации 2,5 года, т. е. время действия данной температуры в течение года составляет  $\alpha$ . = 5%.

 $T_{pa62}^{'}$  = 40 °C — расчетный срок эксплуатации 20 лет, т. е.  $\alpha_{2}$  = 40%.

 $T_{\text{раб3}}^{\text{росс}}$  = 60 °C — расчетный срок эксплуатации 25 лет, т. е.  $\alpha_3^2$  = 50%.

 $T_{\text{макс}}^{\text{раоз}}$  = 70 °C — расчетный срок эксплуатации 2,5 года, т. е.  $\alpha_4$  = 5%.

 $T_{\text{авар}}^{\text{monoto}}$  = 100 °C — расчетный срок эксплуатации 100 часов, т. е.  $\alpha_{\text{5}}$  = 0,0228%.

 $\alpha_1^{3000}$ ,  $\alpha_2^{30}$ ,  $\alpha_3^{30}$ ,  $\alpha_4^{30}$ ,  $\alpha_5^{30}$  — время действия температуры ( $T_1^{30}$ ,  $T_2^{30}$ ,  $T_3^{30}$ ,  $T_4^{30}$ ,  $T_5^{30}$  соответственно) в течение года в процентах.

Суммарное повреждение ТҮР (%/час) определяется по формуле:

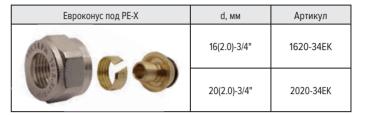
$$\mathsf{TYD} = \Sigma \; \mathsf{a}_{\mathsf{i}}/\mathsf{t}_{\mathsf{i}}$$

TYD = 0,000335 %/ч.

Далее вычисляем Т, по формуле:

$$T_x = 100/TYD$$

 $T_v = 100/0,000335 = 298307 ч = 34$  года.


Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 4 срок службы данной трубы более 34 лет с рабочим давлением 8,4 бара.

#### 3. НОМЕНКЛАТУРА «ТЕПЛЫЙ ПОЛ»

| Труба РОСТерм РЕ-Ха с EVOH «Теплый пол» |       |       |          |            |  |
|-----------------------------------------|-------|-------|----------|------------|--|
| Изображение                             | d, мм | S, MM | Бухта, м | Артикул    |  |
| THURST THURST TON HE-YAVENER SE DE      | 16    | 2.0   | 100*     | 16PAEVOH1T |  |
|                                         | 20    | 2.0   |          | 20PAEVOH1T |  |

| Труба РОСТерм РЕ-Хb «Теплый пол» |       |       |          |          |
|----------------------------------|-------|-------|----------|----------|
| Изображение                      | d, мм | S, MM | Бухта, м | Артикул  |
| THURST THURST THE SP 65.5        | 16    | 2.0   | 100*     | 16PB100T |
|                                  | 20    | 2.0   |          | 20PB100T |

| Труба РОСТерм PE-Xb с EVOH «Теплый пол» |       |       |          |              |  |
|-----------------------------------------|-------|-------|----------|--------------|--|
| Изображение                             | d, мм | S, MM | Бухта, м | Артикул      |  |
| Tenna non Perth RIGHA                   | 16    | 2.0   | 100*     | 16PBEVOH100T |  |
|                                         | 20    | 2.0   |          | 20PBEVOH100T |  |



## 4. СИСТЕМА РОСТЕРМ РЕ-Х С EVOH ДЛЯ РАДИАТОРНОГО ОТОПЛЕНИЯ И ВОДОСНАБЖЕНИЯ

### 4.1. Преимущества системы РОСТерм PE-X с EVOH для радиаторного отопления и водоснабжения

- Высокая устойчивость к воздействию химических веществ.
- Абсолютная герметичность соединений.
- Низкий уровень шума при эксплуатации.
- Отсутствие коррозии.
- Отсутствие зарастания внутреннего диаметра после многолетней эксплуатации.
- Значительная ударная прочность и стойкость.
- Низкие потери напора на криволинейных участках.
- Быстрый и максимально надежный метод соединения при помощи надвижной гильзы, гарантирующий безопасное проведение работ ввиду отсутствия пайки и сварки.
- Независимость от источников энергии при проведении монтажа.



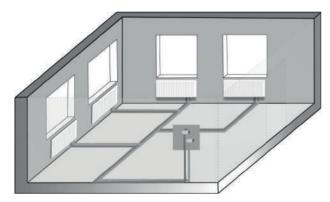
Трубы РОСТерм PE-X EVOH являются универсальными и могут использоваться как в радиаторном отоплении, так и в системах горячего и холодного водоснабжения.

#### 4.2. Фитинги PPSU — современное техническое решение

Полифенилсульфон (PPSU) уже давно используется в космической промышленности и в самолетостроении, пройдя испытания в самых тяжелых условиях эксплуатации. Он устойчив к агрессивным средам и превосходит по прочности латунь.

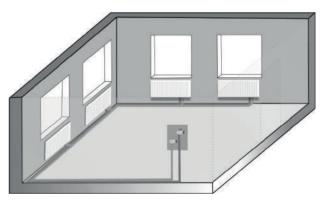
Фитинги PPSU допускаются к скрытой прокладке, заливке в бетон, что существенно расширяет возможности при проектировании систем со скрытой разводкой. Их применение позволяет увеличить надежность системы небольшого числа разборных соединений, сократить количество используемой арматуры, уменьшить расход труб и упростить сервисное обслуживание и ремонт.

#### Свойства PPSU материала:


- Максимальная температура длительной эксплуатации 185 °C.
- Высокая атмосферостойкость.
- Самозатухающий материал.
- Температура стеклования 220 °C.

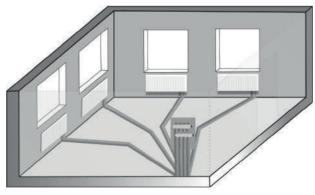
<sup>\*</sup>Возможна намотка нестандартной длины (50, 200, 400, 500 м)

- Высокая химическая стойкость (к автотопливу, растворителям, гидролизу и т. д.).
- Хорошие диэлектрические свойства.
- Не подвержен коррозии.
- Не токсичен.
- Не разрушается при температуре наружного воздуха до -40 °C.
- Высокая стойкость к растрескиванию.
- Не хрупкий.


### 4.3. Монтаж системы РОСТерм PE-X с EVOH для радиаторного отопления и водоснабжения

Схемы радиаторного отопления могут быть самыми разнообразными в зависимости от размера системы и типа здания. Подводка к радиаторам может быть периметральной (тройниковой) или коллекторной, а схема — одно- или двухтрубной. Двухтрубная система с горизонтальной разводкой (коллекторная и периметральная/тройниковая) наиболее предпочтительна для использования в современном многоэтажном строительстве.




#### І. Тройниковая разводка

Прокладка трубопроводов осуществляется по площади помещения (этажа) с использованием тройников.



#### II. Периметральная разводка

Прокладка трубопроводов осуществляется по периметру помещения (этажа) с использованием тройников в местах установки радиаторов.



Прокладка отдельных трубопроводов осуществляется от распределительного коллектора к каждому отопительному прибору.

#### III. Лучевая разводка

Особенности коллекторно-лучевой системы:

- В системе может использоваться только один диаметр труб (обычно это 16 мм), благодаря чему сокращается необходимый ассортимент труб и фитингов, а также упрощается проектирование и монтаж.
- Меньшее количество соединений подключения имеются только на коллекторах и приборах, что существенно экономит время монтажа и полностью исключает человеческий фактор при сборке системы.
- Благодаря уменьшению количества соединений увеличивается надежность системы.
- Учитывая особенности укладки трубы, существует возможность замены поврежденного участка трубы без разрушения конструкции пола.
- При монтаже трубы к черновому полу необходимо соблюдать расстояние между креплениями согласно СП 41-109-2005 п.3.6.7 табл.4

#### Способы подключения труб РОСТерм к отопительным приборам



Непосредственное подключение трубы к радиатору с помощью медных L- и T-образных трубок



Непосредственное подключение трубы к радиатору через H-образную гарнитуру



Непосредственное подключение трубы к радиатору с помощью резьбовых латунных фитингов



Непосредственное подключение трубы к радиатору с помощью H-образной гарнитуры и медных L- и T-образных трубок

#### Монтаж системы РОСТерм РЕ-Х



1. Выберите насадку для экспандера нужного размера.



2. Вставьте наконечник насадки в трубу РЕ-Х.



3. Проведите экспандирование трубы PE-X в три этапа (30%, 70%, 100%), между этапами проворачивая экспандируемую трубу на 30° вокруг своей оси.



4. Вставьте фитинг в расширенную трубу.



5. Переведите ручку тисков в верхнее положение, потяните вниз блокиратор, чтобы разъединить рычаг и насадку на тиски, вытащите осевые болты, установите необходимую насадку на тиски, зафикисруйте осевой болт и верните в исходное положение блокиратор.



6. Вставьте фитинг в зажимной инструмент.



7. Проведите запрессовку до тех пор, пока гильза не соединится с кольцом фитинга полностью, рекомендуется избегать зазоров и несоосности соединения между фитингом и гильзой.



8. Потяните вниз блокиратор, чтобы разъединить рычаг и насадку на тиски, поднимите ручку тисков в верхнее положение, тиски автоматически разъединятся.



9. Извлеките установленный фитинг.

- При монтаже трубы к черновому полу необходимо соблюдать расстояние между креплениями, согласно СП 41-109-2005 п.З.6.7 табл. 4. При монтаже фитингов из PPSU не рекомендуется применение химически агрессивных к полимерам веществ (клеев, герметиков, растворителей, кислот, щелочей и др.), за исключением составов, в описании которых разрешено взаимодействие с PPSU.
- Категорически запрещено применение следующих герметизирующих материалов: Ever Seal Thread 483; Loctite 518, 542, 55; Scotch-grip Rubber 1300, 2141, 847; Rector Seal S; Rite Lock; Selete Unyte и других анаэробных герметиков, а также льна и клея.

#### 4.4. Хранение и транспортировка

- Трубы производятся из экологически чистого сырья. При хранении и эксплуатации трубы не выделяют в окружающую среду токсичных веществ и не оказывают вредного воздействия на человека.
- Хранить трубы в бухтах необходимо на ровной поверхности.
- При хранении, транспортировке и монтаже труб и фитингов следует избегать их контакта с режущими и колющими деталями.
- Неупакованные в защитную пленку или картонную коробку трубы следует хранить в месте, обеспечивающем отсутствие длительного прямого воздействия ультрафиолетовых лучей.

#### 4.5. Определение срока эксплуатации труб

#### Задача 1

Необходимо рассчитать срок службы трубы PE-X, SDR 7.4, эксплуатируемой в системе отопления с рабочим давлением 10 бар для класса эксплуатации 5.

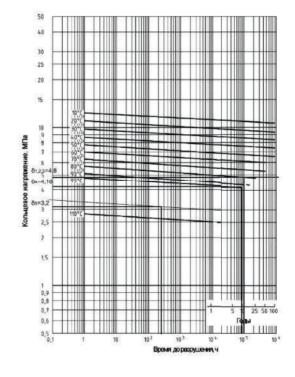
Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

$$T_{pa6} = T_{1} = 20 \, ^{\circ}\text{C},$$
 $T_{pa6} = T_{2} = 60 \, ^{\circ}\text{C},$ 
 $T_{pa6} = T_{3} = 80 \, ^{\circ}\text{C},$ 
 $T_{makcumanbhoe} = T_{makc} = 90 \, ^{\circ}\text{C},$ 
 $T_{abanwähoe} = T_{aban} = 100 \, ^{\circ}\text{C}.$ 

Определяем расчетное напряжение в стенке трубы  $(\delta_{\scriptscriptstyle 0})$  из следующего выражения:

$$\delta_0 = P \times S = 1,0 \times 3,2 = 3,2 M\Pi a,$$
 где  $P -$ рабочее давление,  $S -$ серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах  $T_{pa6}$ ,  $T_{makc}$ ,  $T_{aвар}$  согласно ГОСТ 32415-2013:  $C_{1.3} = 1,5$  (коэффициент запаса прочности для  $T_{1.3}$ ),  $C_2 = 1,3$  (коэффициент запаса прочности для  $T_4$ ),  $C_3 = 1$  (коэффициент запаса прочности для  $T_c$ ).


Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:  $\delta_{1,3} = C_1 \times \delta_0 = 1.5 \times 3.2 = 4.8 \ M\Pia$ ,

$$\delta_2 = C_2 \times \delta_0 = 1.3 \times 3.2 = 4.16 \text{ M}\Pi \text{a},$$
  
 $\delta_2 = C_2 \times \delta_0 = 1.3 \times 3.2 = 3.2 \text{ M}\Pi \text{a}$ 

 $\delta_3 = C_3 \times \delta_0 = 1 \times 3,2 = 3,2 \text{ M}\Pi a.$ 

Пользуясь графиком изотермы прочности материала PE-X, определяем время  $\mathbf{t}_{\text{раб}},\ \mathbf{t}_{\text{макс}},\ \mathbf{t}_{\text{авар}},\$ которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_1,\ \delta_2,\ \delta_3$ :

$$T_{\text{pa61}} > 900\ 000\ (50\ \text{лет})\ \text{ч.,}\ T_{\text{pa62}} > 450\ 000\ (50\ \text{лет})\ \text{ч.,}\ T_{\text{pa63}} = 100\ 000\ (11,4\ \text{года})\ \text{ч.,}\ T_{\text{макс}} = 85\ 000\ (9,7\ \text{года})\ \text{ч.,}\ T_{\text{авар}} = 260\ \text{ч.}$$



Далее из правила Майнера следует, что если время до разрушения трубы составляет  $t_1$  (лет) при непрерывном действии температуры  $T_1$ , то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры.

Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha_1$ , то «доля годового повреждения» составляет  $\alpha_1/t_1$ .

 $T_{patt} = 20 \, ^{\circ}\text{C}$  — расчетный срок эксплуатации 14 лет, т. е. время действия данной температуры в течение года составляет  $\alpha_1 = 28\%$ 

 $T_{pa62} = 60 \, ^{\circ}\text{C}$  — расчетный срок эксплуатации 25 лет, т. е.  $\alpha_2 = 50\%$ ,

 $T_{pa63}^{-}$  = 80 °C — расчетный срок эксплуатации 10 лет, т. е.  $\alpha_3^2$  = 20%,

 $T_{\text{макс}} = 90 \, ^{\circ}\text{C}$  — расчетный срок эксплуатации 1 год, т. е.  $\alpha_{\text{A}} = 2\%$ ,

 $T_{\text{авар}} = 100~^{\circ}\text{C}$  — расчетный срок эксплуатации 100 часов, т. е.  $\alpha_{\text{s}} = 0,0228\%$ ,

 $\alpha_1^{\prime}, \alpha_2^{\prime}, \alpha_3^{\prime}, \alpha_4^{\prime}, \alpha_5^{\prime}$  — время действия температуры ( $T_1^{\prime}, T_2^{\prime}, T_3^{\prime}, T_4^{\prime}, T_5^{\prime}$  соответственно) в течение года в процентах.

Пользуясь формулой:

$$TYD = \Sigma \alpha/t$$

получаем следующее: ТҮD = 0,000453 %/час.

Далее вычисляем Т по формуле:

$$T_y = 100/TYD$$

 $T_{y} = 100/0,000453 = 220527 ч = 25,7 года.$ 

Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5 срок службы данной трубы равен 25,7 года с рабочим давлением 10 бар.

#### Задача 2

Необходимо рассчитать срок службы трубы PE-X, SDR 7.4, эксплуатируемой в системе ГВС с рабочим давлением 11,1 бара для класса эксплуатации 2.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

 $T_{pa6} = T_1 = 70 \, ^{\circ}\text{C}$  — рабочая температура,

 $T_{\text{макс}}^{\text{вос}} = T_{2}^{\text{-}} = 80 \, ^{\circ}\text{C}$  — максимальная рабочая температура,

 $T_{\text{авар}}^{\text{макс}} = T_3^2 = 95 \, ^{\circ}\text{C}$  — аварийная температура.

Определяем расчетное напряжение в стенке трубы  $(\delta_0)$  из следующего выражения:

 $\delta_0 = P \times S = 1,11 \times 3,2 = 3,55 \text{ M}\Pi \text{a},$ 

где Р — рабочее давление,

S — серия трубы.

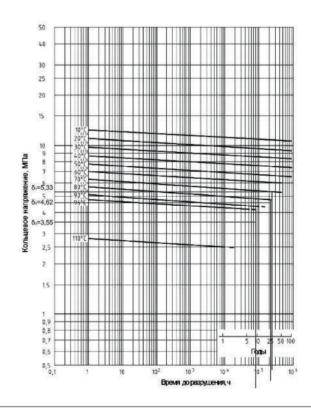
Устанавливаем коэффициенты запаса прочности при температурах  $T_{\text{pa6}}$ ,  $T_{\text{макс}}$ ,  $T_{\text{авар}}$  согласно ГОСТ 32415-2013:

 $C_1 = 1,5$  (коэффициент запаса прочности для  $T_1$ ),

 $C_{2}^{'} = 1,3$  (коэффициент запаса прочности для  $T_{2}^{'}$ ),

 $C_{2} = 1$  (коэффициент запаса прочности для  $T_{2}$ ).

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности:


$$\delta_1 = C_1 \times \delta_0 = 1.5 \times 3.55 = 5.33 \text{ M}\Pi \text{a},$$

$$\delta_2 = C_2 \times \delta_0 = 1.3 \times 3.55 = 4.62 \text{ M}\Pi \text{a},$$

$$\delta_3^2 = C_3^2 \times \delta_0^0 = 1 \times 3,55 = 3,55 \text{ M}\Pi \text{a}.$$

Пользуясь графиком изотермы прочности материала PE-X, определяем время  $t_{\text{раб}},\ t_{\text{макс}},\ t_{\text{авар}},\$ которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_1,\ \delta_2,\ \delta_3$ .

$$T_{\rm pa6}$$
 = 230 000 (26,3 года) ч.,  $T_{\rm makc}$  = 210 000 (24 года) ч,  $T_{\rm agap}$  = 80 000 (9,1 года) ч.



Далее из правила Майнера следует, что если время до разрушения трубы составляет t, (лет) при непрерывном действии температуры  $T_1$ , то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину α,, то «доля годового повреждения» составляет  $\alpha_{\scriptscriptstyle 1}/t_{\scriptscriptstyle 1}$ .

 $T_{pad} = 70 \, ^{\circ}\text{C}$  — расчетный срок эксплуатации 49 лет, т. е.  $\alpha_1 = 98\%$ ,

 $T_{\text{макс}}^{\text{рас}}$  = 80 °C — расчетный срок эксплуатации 1 год, т. е.  $\alpha_2$  = 2%,  $T_{\text{авар}}$  = 95 °C — расчетный срок эксплуатации 100 часов, т. е.  $\alpha_3$  = 0,228%,

 $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  — время действия температуры ( $T_1$ ,  $T_2$ ,  $T_3$  соответственно) в течение года в процентах.

Суммарное повреждение ТҮД (%/час) определяется по формуле:

TYD = 
$$\Sigma a_i/t_i$$

TYD = 0,000436 %/yac.

Далее вычисляем Т по формуле:

 $T_v = 100/TYD$ ,

 $T_{\rm u} = 100/0,000436 = 229465 \, \text{ч} = 26,19 \, \text{года}.$ 

Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 2 срок службы данной трубы 26,19 года с рабочим давлением 11,1 бара.

#### 5. НОМЕНКЛАТУРА

Трубы РЕ-Ха

| Труба РОСТерм РЕ-Ха универсальная |       |       |                  |           |
|-----------------------------------|-------|-------|------------------|-----------|
| Изображение                       | d, мм | S, MM | Бухта, м         | Артикул   |
|                                   | 16    | 2,2   |                  | 16PAEVOH1 |
|                                   | 20    | 2,8   | 400*             | 20PAEVOH1 |
|                                   | 25    | 3,5   | 100 <sup>*</sup> | 25PAEVOH1 |
|                                   | 32    | 4,4   |                  | 32PAEVOH1 |

<sup>\*</sup>Возможна намотка нестандартной длины (50, 200 м)

| Труба РОСТерм РЕ-Ха для водоснабжения |       |       |          |         |
|---------------------------------------|-------|-------|----------|---------|
| Изображение                           | d, мм | S, MM | Бухта, м | Артикул |
|                                       | 16    | 2,2   | 400      | 16PA100 |
|                                       | 20    | 2,8   |          | 20PA100 |
|                                       | 25    | 3,5   | 100      | 25PA100 |
|                                       | 32    | 4,4   |          | 32PA100 |

Трубы PE-Xb

| Труба РОСТерм PE-Xb универсальная |       |       |          |         |
|-----------------------------------|-------|-------|----------|---------|
| Изображение                       | d, мм | S, MM | Бухта, м | Артикул |
|                                   | 16    | 2,2   |          | 16PBE1  |
|                                   | 20    | 2,8   | 400*     | 20PBE1  |
|                                   | 25    | 3,5   | 100*     | 25PBE1  |
|                                   | 32    | 4,4   |          | 32PBE1  |

| Труба РОСТерм РЕ-ХЬ для водоснабжения |       |       |          |         |
|---------------------------------------|-------|-------|----------|---------|
| Изображение                           | d, мм | S, MM | Бухта, м | Артикул |
|                                       | 16    | 2,2   | 400      | 16PB1   |
|                                       | 20    | 2,8   |          | 20PB1   |
|                                       | 25    | 3,5   | 100      | 25PB1   |
|                                       | 32    | 4,4   |          | 32PB1   |

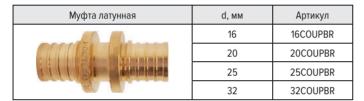
#### Фитинги PPSU и Гильза PVDF

| Муфта переходная РОСТерм PPSU | d, мм   | Артикул     |
|-------------------------------|---------|-------------|
|                               | 16 x 20 | 1620COUPPSU |
|                               | 16 x 25 | 2025COUPPSU |
|                               | 20 x 25 | 1625COUPPSU |
|                               | 25 x 32 | 2532COUPPSU |

| Уголок РОСТерм 90° PPSU | d, мм | Артикул   |
|-------------------------|-------|-----------|
|                         | 16    | 16ELBPPSU |
|                         | 20    | 20ELBPPSU |
|                         | 25    | 25ELBPPSU |
|                         | 32    | 32ELBPPSU |

| Муфта РОСТерм PPSU      | d, мм | Артикул   |
|-------------------------|-------|-----------|
|                         | 16    | 16COUPPSU |
|                         | 20    | 20COUPPSU |
| COLUMN TO THE PROPERTY. | 25    | 25COUPPSU |
|                         | 32    | 32COUPPSU |

| Тройник POCTepm PPSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d, мм | Артикул   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| ALL CONTROL OF THE PARTY OF THE | 16    | 16TEEPPSU |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20    | 20TEEPPSU |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25    | 25TEEPPSU |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32    | 32TEEPPSU |






#### Фитинги ЛАТУНЬ

| Гильза латунная | d, мм    | Артикул   |
|-----------------|----------|-----------|
| NOTEPIN 20      | 16 x 2,2 | 16GL24-23 |
|                 | 20 x 2,8 | 20GL28-26 |
|                 | 25 x 3,5 | 25GL32-27 |
|                 | 32 x 4,4 | 32GL39-34 |

| Адаптер для медных трубок НР | d, мм     | Артикул |
|------------------------------|-----------|---------|
|                              | 15 x 1/2" | 15-12AD |
|                              |           |         |



| Муфта переходная латунная                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d, мм   | Артикул    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 x 20 | 1620COUPBR |
| Andrew Property of the Parket | 16 x 25 | 1625COUPBR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 x 25 | 2025COUPBR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 x 32 | 2532COUPBR |



| Уголок 90° латунный | d, мм | Артикул  |
|---------------------|-------|----------|
|                     | 16    | 16ELBR90 |
|                     | 20    | 20ELBR90 |
| E L                 | 25    | 25ELBR90 |
|                     | 32    | 32ELBR90 |



| Уголок с настенным креплением | d, мм   | Артикул   |
|-------------------------------|---------|-----------|
|                               | 16-1/2" | 16RVO1612 |
|                               | 20-1/2" | 20RVO2012 |







| Заглушка 16 x 2,2 | d, мм | Артикул |
|-------------------|-------|---------|
|                   | 16    | 16PLUG  |

| Переходник с накидной гайкой 16*2,2- G3/4" Евроконус (в комплекте с напрессовочной гильзой) латунь | d, мм   | Артикул     |
|----------------------------------------------------------------------------------------------------|---------|-------------|
|                                                                                                    | 16-3/4" | 1622AX-34EK |

| Евроконус под РЕ-Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d, мм        | Артикул   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| The state of the s | 16(2.2)-1/2" | 1622-12EK |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16(2.2)-3/4" | 1622-34EK |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20(2.8)-3/4" | 2028-34EK |

| Евроконус 15 х 3/4" ВР для медных трубок | d, мм     | Артикул |
|------------------------------------------|-----------|---------|
|                                          | 15 x 3/4" | 15-34EK |

| Угольник-переходник НР | d, мм   | Артикул     |
|------------------------|---------|-------------|
| September 1            | 16-1/2" | 16ELB-12EXT |

| Угольник-переходник BP | d, мм   | Артикул     |
|------------------------|---------|-------------|
|                        | 16-1/2" | 16ELB-12INT |

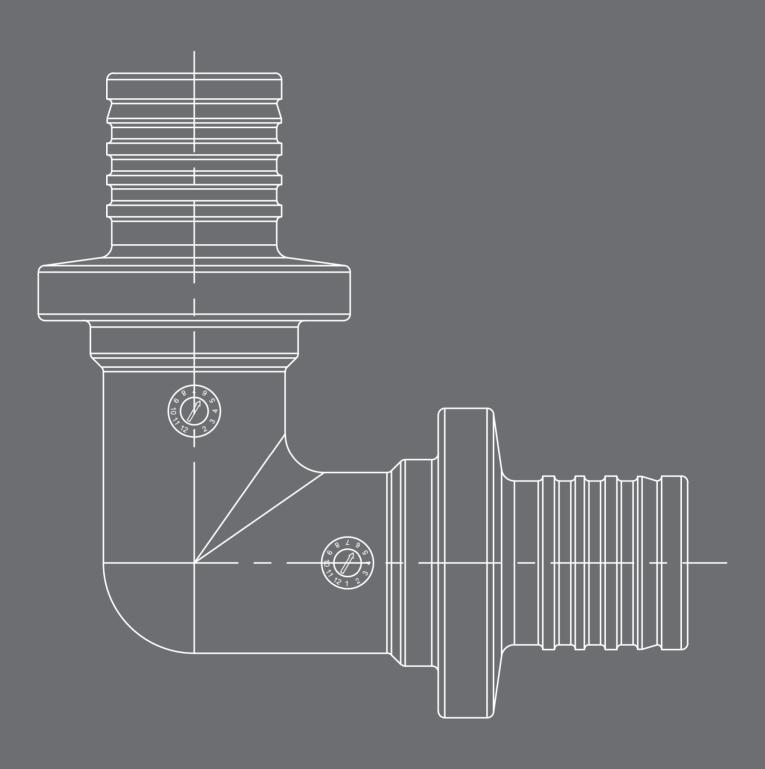


| Тройник L-образный для подключения радиатора<br>(250) | d, мм   | Артикул |
|-------------------------------------------------------|---------|---------|
|                                                       | 16 x 15 | 16L-25  |
|                                                       | 20 x 15 | 20L-25  |

| U- образная сдвоенная радиаторная трубка,<br>латунная | d, мм | Артикул |
|-------------------------------------------------------|-------|---------|
|                                                       | 16x15 | 16U-30  |

#### Инструменты для системы РЕ-Х

| Комплект механического Pro инструмента<br>для системы PE-X POCTepм | d, мм | Артикул    |
|--------------------------------------------------------------------|-------|------------|
|                                                                    | 16–32 | 1632RTMPRO |


| Комплект гидравлического инструмента<br>для системы PE-X РОСТерм | d, мм | Артикул   |
|------------------------------------------------------------------|-------|-----------|
|                                                                  | 16–32 | ROIG16-32 |

#### Кожух гофрированный

| Гофра защитная РОСТерм (красная) | d, мм                   | Артикул |
|----------------------------------|-------------------------|---------|
|                                  | 25<br>(под трубу 16 мм) | 25CR    |
|                                  | 32<br>(под трубу 20 мм) | 32CR    |
|                                  | 40<br>(под трубу 25 мм) | 40CR    |
|                                  | 50<br>(под трубу 32 мм) | 50CR    |

| Гофра защитная РОСТерм (синяя) | d, мм                   | Артикул |
|--------------------------------|-------------------------|---------|
|                                | 25<br>(под трубу 16 мм) | 25CB    |
|                                | 32<br>(под трубу 20 мм) | 32CB    |
|                                | 40<br>(под трубу 25 мм) | 40CB    |
|                                | 50<br>(под трубу 32 мм) | 50CB    |

## СИСТЕМА ТРУБ ИЗ ТЕРМОСТОЙКОГО ПОЛИЭТИЛЕНА PE-RT



#### 1. СИСТЕМА ТРУБ ИЗ ТЕРМОСТОЙКОГО ПОЛИЭТИЛЕНА PE-RT

#### 1.1. Характеристика системы

Трубы PE-RT РОСТерм и PE-RT с EVOH РОСТерм производятся из термостойкого полиэтилена, тип II.

| № п/п | Наименование показателя                          | Значение |
|-------|--------------------------------------------------|----------|
| 1     | Плотность, г/см²                                 | 0,941    |
| 2     | Температура размягчения по Вика, °С              | 124,5    |
| 3     | Предел прочности при разрыве, МПа                | 36       |
| 4     | Относительное удлинение при разрыве, %           | 760      |
| 5     | Предел текучести при растяжении, МПа             | 20,6     |
| 6     | Относительное удлинение при пределе текучести, % | 13       |
| 7     | Модуль упругости при растяжении, Н/мм²           | 650      |
| 8     | Коэффициент линейного теплового расширения, °C   | 0,15     |
| 9     | Коэффициент теплопроводности, Вт/м °С            | 0,4      |
| 10    | Удельная теплоемкость, кДж/кг °С                 | 2        |

#### 1.2. Общие рекомендации по применению системы РОСТерм PE-RT

Теплоотдача — перенос теплоты через ограждающую конструкцию от взаимодействующей с ней среды с более высокой температурой к среде с другой стороны конструкции с более низкой температурой (СП 23-101-2004).

Трубы PE-RT РОСТерм применяются в системах питьевого и хозяйственно-питьевого назначения, горячего водоснабжения, водяного низкотемпературного отопления, а также в качестве технологических трубопроводов, транспортирующих жидкости, не агрессивные к материалам трубы.

Соединительные элементы см. на стр. 49.

#### 1.3. Определение срока эксплуатации труб

#### Задача 1

Необходимо рассчитать срок службы РОСТерм PE-RT II, SDR 7.4, эксплуатируемой в системе ГВС с рабочим давлением 10,5 бара, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 2.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

 $T_{pa6} = T_1 = 70 \, ^{\circ}\text{C}$  — рабочая температура,

 $T_{MAKC}^{+} = T_{2} = 80 \, ^{\circ}\text{C}$  — максимальная рабочая температура,

 $T_{abap} = T_3 = 95 \, ^{\circ}\text{C}$  — аварийная температура.

Определяем расчетное напряжение в стенке трубы  $(\delta_0)$  из следующего выражения:

 $\delta_0 = P \times S = 1,05 \times 3,2 = 3,36 \text{ M}\Pi a$ ,

где P — рабочее давление, S — серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах T<sub>паб</sub>, Т<sub>макс</sub>, Т<sub>авар</sub> согласно ГОСТ 32415-2013:

 $C_1 = 1,5$  — коэффициент запаса прочности для  $T_1$ ,

 $C_{2} = 1,3$  — коэффициент запаса прочности для  $T_{2}$ ,

 $C_3 = 1$  — коэффициент запаса прочности для  $T_3$ .

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности.

 $\delta_1 = C_1 \times \delta_0 = 1.5 \times 3.36 = 5.04 \text{ M}\Pi \text{a},$ 

 $\delta_2 = C_2 \times \delta_0 = 1.3 \times 3.36 = 4.37 \text{ M}\Pi \text{a},$ 

 $\delta_3 = C_3 \times \delta_0 = 1 \times 3,36 = 3,36 \text{ M}\Pi a.$ 

Пользуясь графиком изотермы прочности материала PE-RT II, определяем время  $t_{_{DB6}}, t_{_{MAKC}}, t_{_{BBB0}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно δ., δ.,

 $T_{pa6}^{"}$  > 450 000 ч (51,37 года),  $T_{MAKC}$  = 136 000 ч (15,53 года), Т<sub>авар</sub> = 18 976 ч (2,17 года).

Далее из правила Майнера следует, что если время до разрушения трубы составляет t, (лет) при непрерывном действии температуры  $\mathsf{T}_{\scriptscriptstyle 1}$ , то отношение  $\mathsf{t}_{\scriptscriptstyle 1}$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры.

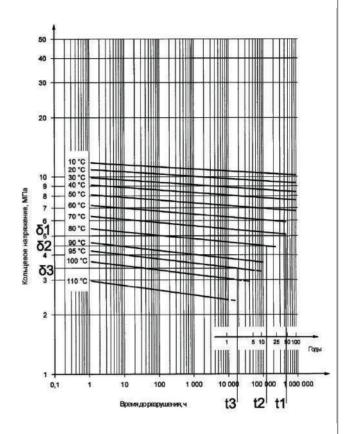
Если действие этой температуры в течение года непре-рывно и составляет величину  $\alpha_{{}_{\!\scriptscriptstyle 4}}$ , то «доля годового повреждения» составляет α,/t,:

 $\alpha_1$  = 97,98% — расчетный срок эксплуатации 49 лет при  $T_{nab}$  = 70 °C,  $\alpha_2 = 2\%$  — расчетный срок эксплуатации 1 год при  $T_{\text{макс}} = 80$  °C,

 $\alpha_{2}$  = 0,0228% — расчетный срок эксплуатации 100 часов при  $T_{apan} = 95$  °C,

 $\alpha_1, \alpha_2, \alpha_3$  — время действия температуры ( $T_1, T_2, T_3$  соответственно) в течение года в процентах.

Суммарное повреждение ТҮD (%/час) определяется по формуле: TYD =  $\Sigma \alpha/t$ 


ТҮD = 0,000233633 %/час.

Далее вычисляем Т, по формуле:

T = 100/TYD

 $T_{\rm o} = 100/0,000233633 = 428\,021\,$ часов = 48,86 года.

Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 2, срок службы данной трубы 48 лет с рабочим давлением 10,5 бара.



#### Задача 2

Необходимо рассчитать срок службы РОСТерм PE-RT II, SDR 7.4, эксплуатируемой в системе отопления с рабочим давлением 9 бар, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5.

Исходя из вышеуказанных данных, задан следующий температурный режим в течение расчетного срока службы 50 лет:

 $T_{pa61} = T_1 = 20 \, ^{\circ}C$ 

 $T_{pa62} = T_{2} = 60 \, ^{\circ}\text{C},$ 

 $T_{pa63} = T_3^2 = 80 \text{ °C},$ 

 $T_{\text{MAKC}}^{\text{PAOS}} = T_4^3 = 90 \,^{\circ}\text{C},$   $T_{\text{BBAP}}^{\text{BAOS}} = T_5 = 100 \,^{\circ}\text{C}.$ 

Определяем расчетное напряжение в стенке трубы ( $\delta_{\circ}$ ) из следующего выражения:

 $\delta_0 = P \times S = 0.9 \times 3.2 = 2.88 \text{ M}\Pi \text{a},$ 

где P — рабочее давление, S — серия трубы.

Устанавливаем коэффициенты запаса прочности при температурах  $T_{\text{\tiny Dado}}$ ,  $T_{\text{\tiny MAKC}}$ ,  $T_{\text{\tiny BBBD}}$  согласно ГОСТ 32415-2013:

 $C_{1.3} = 1,5$  — коэффициент запаса прочности для  $T_{1.3}$ ,

 $C_2 = 1,3$  — коэффициент запаса прочности для  $T_4$ 

 $C_3 = 1$  — коэффициент запаса прочности для  $T_5$ .

Определяем расчетное напряжение в стенке трубы с учетом действия коэффициентов запаса прочности.

 $\delta_{1.3} = C_1 \times \delta_0 = 1.5 \times 2.88 = 4.32 \text{ M}\Pi \text{a},$ 

 $\delta_4 = C_2 \times \delta_0 = 1.3 \times 2.88 = 3.74 \text{ M}\Pi \text{a},$ 

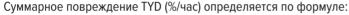
 $\delta_{5} = C_{3} \times \delta_{0} = 1 \times 2,88 = 2,88 \text{ M}\Pi a.$ 

Пользуясь графиком изотермы прочности материала PE-RT II, определяем время  $t_{\text{pag}}$ ,  $t_{\text{макс}}$ ,  $t_{\text{авар}}$ , которое труба может выдерживать, не разрушаясь при непрерывном действии каждой из температур в отдельности, при напряжениях в стенке соответственно  $\delta_{1-3}$ ,  $\delta_4$ ,  $\delta_5$ :

```
T_{\rm pa61} > 900 000 ч (102,74 года), T_{\rm pa62} > 450 000 ч (51,37 года), T_{\rm pa63} > 220 000 ч (25,11 года), T_{\rm makc} = 18 723 ч (2,14 года), T_{\rm abap} > 40 000 ч (4,57 года).
```

Далее из правила Майнера следует, что если время до разрушения трубы составляет  $t_1$  (лет) при непрерывном действии температуры  $T_1$ , то отношение  $1/t_1$  — это «доля повреждения», приходящаяся на год при непрерывном действии указанной температуры. Если действие этой температуры в течение года непрерывно и составляет величину  $\alpha_1$ , то «доля годового повреждения» составляет  $\alpha_1 t_2$ .

 $T_{\text{раб1}}$  = 20 °C — расчетный срок эксплуатации 14 лет, т.е. время действия данной температуры в течение года составляет  $\alpha$  = 28%,


 $T_{\text{pa62}}$  = 60 °C — расчетный срок эксплуатации 25 лет, т.е. время действия данной температуры в течение года составляет  $\alpha_2$  = 50%,

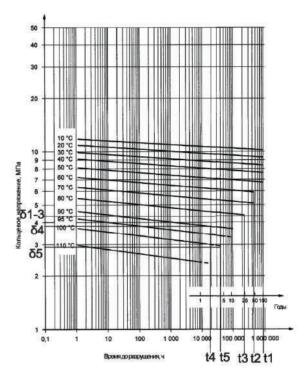
 $T_{\text{раб3}}$  = 80 °C — расчетный срок эксплуатации 10 лет, т.е. время действия данной температуры в течение года составляет  $\alpha_2$  = 20%,

 $T_{_{\text{макс}}}$  = 90 °C — расчетный срок эксплуатации 1 год, т.е. время действия данной температуры в течение года составляет  $\alpha_{_{\! A}}$  = 2%,

 $T_{\text{авар}}$  = 100 °C — расчетный срок эксплуатации 100 часов, т. е. время действия данной температуры в течение года составляет  $\alpha_{\rm s}$  = 0,0228 %.

 $\alpha_{1},\ \alpha_{2},\ \alpha_{3}$  — время действия температуры ( $T_{1},\ T_{2},\ T_{3}$  соответственно) в течение года в процентах.




TYD =  $\Sigma \alpha_i/t_i$ 

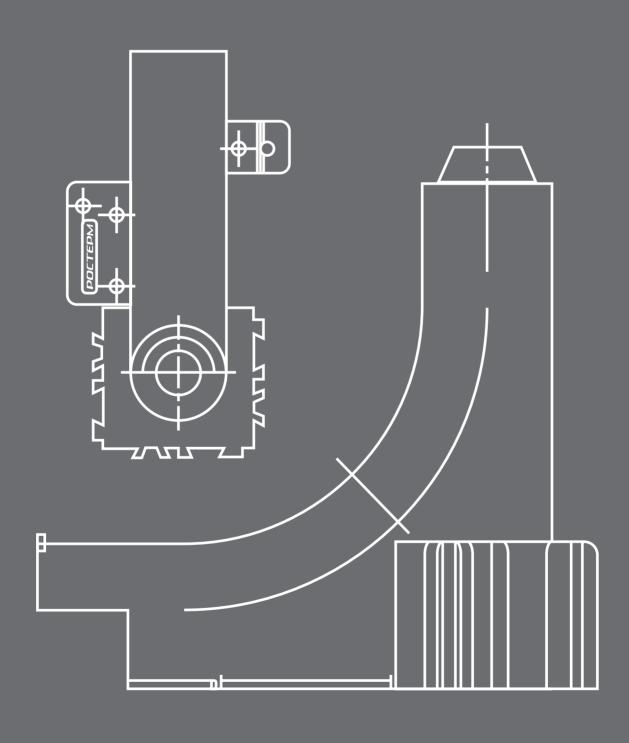
TYD = 0.000340443 %/4ac.

Далее вычисляем Т, по формуле:

 $T_y = 100/TYD$ 

 $T_v = 100/0,000340443 = 293735$  часов = 33,53 года.




Таким образом, в соответствии с ГОСТ 32415-2013, для класса эксплуатации 5 срок службы данной трубы 33 года с рабочим давлением 9 бар.

#### 2. НОМЕНКЛАТУРА

| <b>Труба</b> РОСТерм PE-RT |       |       |          |          |          |
|----------------------------|-------|-------|----------|----------|----------|
| Изображение                | d, мм | S, MM | Бухта, м | Артикул  |          |
|                            | 40    |       | 100      | 16PR100T |          |
|                            | 16    |       | 200      | 16PR200T |          |
|                            | 20    | 2,0   | 100      | 20PR100T |          |
|                            | 20    | 20    |          | 200      | 20PR200T |

| <b>Труба</b> РОСТерм PE-RT EVOH универсальный |       |       |          |                    |
|-----------------------------------------------|-------|-------|----------|--------------------|
| Изображение                                   | d, мм | S, MM | Бухта, м | Артикул            |
|                                               | 16    | 2.2   |          | 16PP-<br>EVOHP100T |
|                                               | 20    | 2.8   |          | 20PP-<br>EVOHP100T |
|                                               | 25    | 3.5   |          | 25PP-<br>EVOHP100T |
|                                               | 32    | 4.4   |          | 32PP-<br>EVOHP100T |

## АКСЕССУАРЫ СОБСТВЕННОГО ПРОИЗВОДСТВА ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ



#### 1. НОМЕНКЛАТУРА

Производственные мощности завода РОСТерм располагают возможностью изготавливать различные изделия из полимерных материалов под собственной маркой заказчика. Для старта производства необходимо согласовать объемы, план и спецификацию вашего заказа, определиться с названием торговой марки и при необходимости разработать дизайн-макет упаковки.

| Шина для укладки тёплого пола |       |          |  |  |
|-------------------------------|-------|----------|--|--|
| Изображение Размер Артикул    |       |          |  |  |
|                               | 0,5 м | PGFWF0.5 |  |  |

| Ключ для переходников и заглушек |      |  |
|----------------------------------|------|--|
| Изображение Артикул              |      |  |
| CORDO                            | KFPR |  |

| Калибратор для металлопластиковой трубы |            |         |  |  |
|-----------------------------------------|------------|---------|--|--|
| Изображение d, мм Артикул               |            |         |  |  |
|                                         | 16, 20, 26 | CFMPT-1 |  |  |

| Фиксатор поворота трубы |               |        |  |
|-------------------------|---------------|--------|--|
| Изображение             | d, мм Артикул |        |  |
|                         | 16            | 16APEX |  |
|                         | 20            | 20APEX |  |
|                         | 25            | 25APEX |  |

| Ключ для фитингов ПНД     |       |         |  |
|---------------------------|-------|---------|--|
| Изображение d, мм Артикул |       |         |  |
|                           | 20-75 | KFFSR-1 |  |

| Скоба якорная для крепления труб |       |          |  |  |  |  |  |
|----------------------------------|-------|----------|--|--|--|--|--|
| Изображение d, мм A              |       |          |  |  |  |  |  |
| 2                                | 16-20 | SYA16-20 |  |  |  |  |  |

| Фиксатор для м/п трубы    |    |           |  |  |  |  |  |  |  |
|---------------------------|----|-----------|--|--|--|--|--|--|--|
| Изображение d, мм Артикул |    |           |  |  |  |  |  |  |  |
|                           | 16 | CLMP16-10 |  |  |  |  |  |  |  |
|                           | 20 | CLMP20-10 |  |  |  |  |  |  |  |
| 50                        | 26 | CLMP26-10 |  |  |  |  |  |  |  |
|                           | 32 | CLMP32-10 |  |  |  |  |  |  |  |

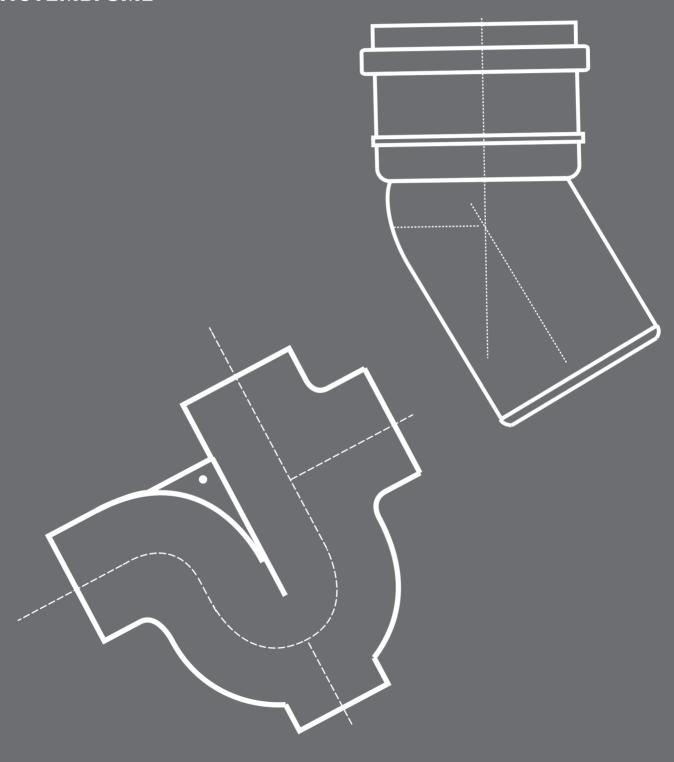
| Ключ для крана Маевского пластиковый |       |  |  |  |  |
|--------------------------------------|-------|--|--|--|--|
| Изображение Артикул                  |       |  |  |  |  |
|                                      | KFF-M |  |  |  |  |

| Скоба для трубной изоляции |       |        |  |  |  |  |  |  |
|----------------------------|-------|--------|--|--|--|--|--|--|
| Изображение Кол-во Артикул |       |        |  |  |  |  |  |  |
| (2)                        | 20 шт | SFT-20 |  |  |  |  |  |  |

| Ключ для фильтра 10 SL    |     |           |  |  |  |  |  |  |
|---------------------------|-----|-----------|--|--|--|--|--|--|
| Изображение d, мм Артикул |     |           |  |  |  |  |  |  |
|                           | 125 | KFFR-10SL |  |  |  |  |  |  |

| Ключ для фильтра BB       |     |         |  |  |  |  |  |  |
|---------------------------|-----|---------|--|--|--|--|--|--|
| Изображение d, мм Артикул |     |         |  |  |  |  |  |  |
|                           | 175 | KFFR-BB |  |  |  |  |  |  |

| Защитная гильза*          |       |        |  |  |  |  |  |  |
|---------------------------|-------|--------|--|--|--|--|--|--|
| Изображение d, мм Артикул |       |        |  |  |  |  |  |  |
| 9                         | 16-20 | 1620KS |  |  |  |  |  |  |


| Колено направляющее одинарное РОСТерм (башмак)** |       |          |  |  |  |  |  |
|--------------------------------------------------|-------|----------|--|--|--|--|--|
| Изображение                                      | d, мм | Артикул  |  |  |  |  |  |
|                                                  | 16-20 | 1620KNEE |  |  |  |  |  |

<sup>\*</sup> Защитная гильза устанавливается на фиксатор-колено разъемный для радиатора

<sup>\*\*</sup> Возможно изготовление в белом цвете

# СИСТЕМЫ ТРУБ И ФИТИНГОВ ДЛЯ ВОДООТВЕДЕНИЯ И КАНАЛИЗАЦИИ

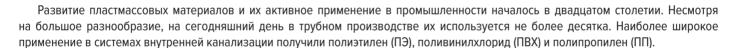
СИСТЕМЫ ВКПП СИСТЕМЫ SML



#### 1. ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ И ОПИСАНИЕ СИСТЕМЫ ВКПП

#### 1.1. Общая информация

Систему трубопроводов и сантехнических приборов, собирающих и отводящих использованную воду и бытовые отходы внутри здания, называют внутренней канализацией. От каждого прибора (мойка, ванна, унитаз) стоки через отводной трубопровод направляются в горизонтальный поэтажный отвод, а затем — в канализационный стояк. В подвальной части дома стояк переходит в горизонтальную трубу-выпуск, отводящий стоки из здания в наружную канализационную сеть. Сточные воды из бассейнов, котлов, систем отопления и очистки также отводятся в систему внутренней канализации. Она является безнапорной, поэтому при укладке трубопроводов необходимо предусматривать уклоны от 1 до 4.


Возможна поставка трубы для наружной прокладки (цвет рыжий) SN4.

#### 1.2. Обзор материалов труб для систем внутренней канализации

На протяжении многих десятилетий основным материалом труб для систем внутренней канализации оставался чугун, поэтому появление и последующее применение пластиковых труб можно без преувеличения назвать революционным шагом в этой области.

#### Преимущества полимерных труб в сравнении с чугунными:

- Легкий вес (в 15-20 раз легче чугуна).
- Быстрый монтаж, не требующий специального оборудования.
- Возможность скрытой прокладки трубопровода.
- Неподверженность химической и электрической коррозии.
- Гладкая поверхность внутренней стенки (отсутствие эффекта «зарастания»).
- Устойчивость к перепадам температур (не разрушается при промерзании).
- Расчетный срок службы свыше 50 лет.



#### Каждый из этих материалов имеет свои преимущества и недостатки.

#### Полиэтилен

Впервые получен в 1930 году, производство труб из этого материала началось в середине 1940-х годов. Среди рассматриваемых материалов имеет наибольшую эластичность. Нетоксичен, не влияет на вкус воды, что делает его использование идеальным в сетях питьевого водоснабжения. Полиэтилен устойчив к воздействию бактерий и грибка. Трубы для внутренней канализации из ПЭ соединяются обычно при помощи раструбов, также возможна сварка встык. Основной недостаток труб из полиэтилена — неспособность выдерживать температуры выше 60 °C. Также вследствие высокой эластичности трудно обеспечить герметичность системы при раструбном соединении.

#### Поливинилхлорид

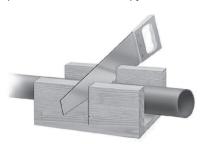
Первый из синтезированных полимерных материалов, который был получен еще в 1860 году. Его массовое применение в промышленности началось в 1930 году. Материал является достаточно прочным, но при этом хрупким, особенно при температурах ниже 5 °C. При горении выделяет ядовитые газы: монооксид и диоксид углерода и хлороводорода. Трубы из ПВХ соединяются при помощи раструбов или методом «холодной сварки» (склеивания).

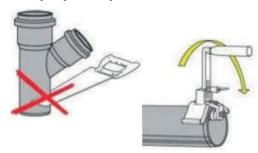
#### Полипропилен

Один из наиболее современных и широко используемых полимерных материалов, массовое применение освоено в 1950-х годах. Благодаря своим свойствам является наилучшим решением для систем внутренней канализации. Стоек к механическим воздействиям, имеет высокую ударную вязкость. Повышенная термостойкость позволяет выдерживать как высокие (кратковременно до 100 °C) так и низкие (до -40 °C) температуры. Допускает полное промерзание. Также полипропилен обладает высокой химической стойкостью к воздействию кислот и щелочей.



Таблица N° 1. Характеристики систем из полимерных материалов

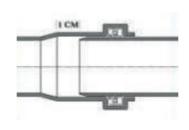

| Материал | Ударная прочность | Механическая прочность | еханическая прочность Химическая стойкость |         | Рабочее значение температурь |  |
|----------|-------------------|------------------------|--------------------------------------------|---------|------------------------------|--|
| ПВХ      | Низкая            | Высокая                | Средняя                                    | Низкая  | 40 °C                        |  |
| ПЭ       | Высокая           | Средняя                | Высокая                                    | Высокая | 60 °C                        |  |
| ПП       | Высокая           | Средняя                | Высокая                                    | Высокая | 90 °C                        |  |


#### 1.3. Монтаж ВКПП

#### Резка труб

Трубы для внутренней канализации из полипропилена выпускают в широком диапазоне длин. Несмотря на это, в процессе монтажа может возникнуть потребность в использовании нестандартной длины отрезка. Для этого необходимо осуществить резку трубы, которая выполняется с помощью обычной ножовки с мелкими зубцами. Для обеспечения большей точности резки обычно используют специальный желоб с разрезом, перпендикулярным к оси трубы. После выполнения резки край трубы нужно сначала обработать ножом или напильником, а затем снять фаску, применяя инструмент для снятия фаски, либо зачистить ее под углом 15° бархатным напильником. Поверхность фаски должна быть абсолютно гладкой, для того чтобы избежать повреждения уплотнительного конца раструба, в который будет вставлена труба.

**Ни в коем случае не следует разрезать фасонные изделия-отводы, тройники, крестовины и т. д.** Размеры этих изделий строго определены производителем, и их нарушение может сделать невозможной последующую эксплуатацию.






#### Соединение труб

Трубы и фасонные части для внутренней канализации из полипропилена соединяются между собой с помощью раструбов. В раструб вмонтировано уплотнительное кольцо из синтетического каучука, которое обеспечивает герметичность соединения и исключает возможность перекоса или смещения.







#### Монтаж

При мотнаже следует:

- 1. Очистить гладкий конец трубы и раструб от загрязнений.
- 2. Проверить уплотнительное кольцо на наличие дефектов или смещения.
- 3. Обработать смазывающим веществом место соединения трубы. Можно использовать силиконовую смазку или мыльный раствор, ни в коем случае нельзя применять минеральные масла.
- 4. Соединить раструб с трубой. Гладкий конец трубы вводится до отказа в муфту, а затем вытягивается назад на 10—15 мм. Таким образом, на каждом стыке создается зазор для компенсации линейного расширения.

Соединения труб следует выполнять, начиная с самой нижней точки. При прохождении через перекрытие вертикальная труба помещается в защитную гильзу с учетом возможного линейного расширения.



#### 1.4. Линейное расширение

При монтаже труб необходимо учитывать термическое удлинение материала. Трубы и фасонные части из ПП имеют коэффициент линейного расширения 0,12 мм/м °С. В трубопроводах с раструбным соединением компенсация термического удлинения происходит именно в раструбах. Во время монтажа труб диаметром выше 50 мм, следует оставлять в раструбе зазор 10–15 мм (для труб с диаметром менее 50 мм зазор должен составлять 10 мм). При этом раструб необходимо закрепить с помощью неподвижной опоры. Таким образом, оставшиеся в раструбах зазоры 10–15 мм будут компенсировать удлинение и сжатие труб при изменении температуры.



#### 1.5. Фиксация

Стояковые трубы внутренней канализации должны быть смонтированы как можно ближе к сантехприборам. При монтаже нужно четко соблюдать монтажные схемы и решения по подключению сантехприборов, указанные в проектной документации. Каждая секция стояка должна быть зафиксирована к стене при помощи неподвижной опоры, которую необходимо разместить под раструбом. Стояковая и горизонтальная трубы должны крепиться как неподвижными, так и скользящими опорами. В табл. 2 представлены рекомендуемые расстояния между неподвижными опорами для труб из полипропилена (м).



#### Максимальное расстояние между опорами для трубопроводов (м)

Таблица № 2

| Номинальный внешний диаметр | Способ монтажа трубопровода |             |  |  |  |
|-----------------------------|-----------------------------|-------------|--|--|--|
| dn, мм                      | горизонтально               | вертикально |  |  |  |
| 32                          | 0,4                         | 0,8         |  |  |  |
| 40                          | 0,5                         | 1,0         |  |  |  |
| 50                          | 0,5                         | 1,0         |  |  |  |
| 75                          | 1,0                         | 2,0         |  |  |  |
| 110                         | 1,0                         | 2,0         |  |  |  |
| 160                         | 1,5                         | 2,0         |  |  |  |

#### 1.6. Противопожарная безопасность

Для предотвращения распространения пожара по пластиковым трубопроводам (ПЭ, ПВХ, ПП) в системах водоснабжения и канализации жилых и промышленных зданий применяется противопожарная самосрабатывающая муфта, которая относится к пассивным системам противопожарной защиты.

В зависимости от планировки помещений противопожарная муфта может использоваться как в шахтах, так и на открытых трубопроводах. Муфта устанавливается на каждую трубу, проходящую через стену или перекрытие. При переходе между этажами муфта становится вплотную к верхнему перекрытию или внутри него.

В случае возникновения пожара муфта препятствует распространению огня и дыма по трубопроводу, локализуя очаг. Противопожарная муфта обеспечивает огнестойкость мест прохода полипропиленовых труб через перекрытия в течение трех часов, что соответствует классу огнестойкости EI 180.

Корпус муфты изготовлен из оцинкованной стали толщиной 1 мм. Внутри корпуса расположен вкладыш из огнезащитного терморасширяющегося материала, который при нагревании в условиях пожара перекрывает пути проникновения огня в смежные помещения. Конструкция корпуса — разъемная, специальная защелка способствует быстрому выполнению монтажных работ. Крепление муфты к потолочному перекрытию производится с помощью присоединения лепестков металлического корпуса муфты посредством винтов и дюбелей.

#### Основные характеристики стандартной противопожарной муфты диаметром 110 мм:

- Габариты: наружный диаметр 132 мм, внутренний 110 мм, высота 60 мм, масса 360 г.
- Температура срабатывания: 170-200 °C.
- Класс огнестойкости: ЕІ 180.
- Легкий монтаж, возможность установки в труднодоступных местах.
- Применение специальных покрытий и сплавов обеспечивает высокую эффективность защиты от пожаров.

Стандартные размеры — d 50 и 100 мм. Под заказ — d 20, 25, 32, 40, 65, 75, 90, 160 мм.

## 2. ВНУТРЕННЯЯ КАНАЛИЗАЦИЯ — ТРУБЫ И ФАСОННЫЕ ЧАСТИ

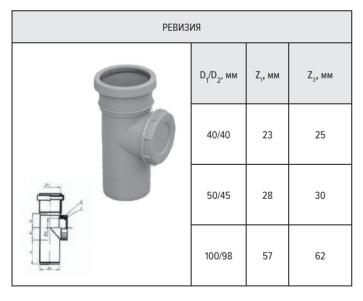


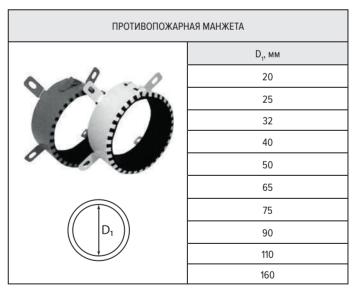
| отвод      |                |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                |
|------------|----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------|
|            | D <sub>1</sub> | α = 15              |                     | α = 30              |                     | α = 45              |                     | α = 67°30           |                     | α = 87°30           |                     |                |
|            | MM             | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | l <sub>e</sub> |
|            | 32             | 5                   | 7                   | 6                   | 11                  | 9                   | 12                  | 14                  | 17                  | 20                  | 22                  | 47             |
| <i>I</i> 2 | 40             | 5                   | 8                   | 7                   | 11                  | 10                  | 14                  | 16                  | 20                  | 23                  | 26                  | 47             |
| 4          | 50             | 5                   | 9                   | 9                   | 12                  | 12                  | 16                  | 20                  | 23                  | 28                  | 31                  | 48             |
| to to      | 110            | 9                   | 14                  | 17                  | 21                  | 25                  | 29                  | 40                  | 44                  | 57                  | 61                  | 58             |





| КРЕСТОВИНА ОДНОПЛОСКОСТНАЯ |                     |                     |                     |                     |                     |                     |                     |                     |                |
|----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------|
|                            |                     |                     |                     | a = 45              |                     |                     | a = 87°30           |                     |                |
|                            | D <sub>1</sub> , мм | D <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | t <sub>e</sub> |
|                            | 50                  | 50                  | 12                  | 61                  | 61                  | 28                  | 30                  | 30                  | 48             |
|                            | 110                 | 50                  | -17                 | 104                 | 91                  | 28                  | 60                  | 32                  | 58             |
| B. 19 19                   | 110                 | 110                 | 25                  | 134                 | 134                 | 57                  | 62                  | 62                  | 58             |





| ЗАГЛУШКА |                     |       |  |  |
|----------|---------------------|-------|--|--|
|          | D <sub>1</sub> , мм | l, mm |  |  |
|          | 32                  | 28    |  |  |
|          | 40                  | 28    |  |  |
|          | 50                  | 28    |  |  |
|          | 110                 | 32    |  |  |

| ТРОЙНИК                            |                                     |                     |                     |                     |                     |                     |                     |                |
|------------------------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------|
| D <sub>1</sub> /D <sub>2</sub> , M |                                     | a = 45°             |                     | a = 87°30           |                     |                     |                     |                |
|                                    | D <sub>1</sub> /D <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | t <sub>e</sub> |
|                                    | 32/32                               | 8                   | 37                  | 37                  | 19                  | 21                  | 21                  | 47             |
|                                    | 40/32                               | 4                   | 41                  | 40                  | 19                  | 24                  | 21                  | 47             |
|                                    | 40/40                               | 10                  | 49                  | 49                  | 23                  | 25                  | 25                  | 47             |
|                                    | 50/40                               | 5                   | 56                  | 54                  | 23                  | 30                  | 25                  | 48             |
|                                    | 50/50                               | 12                  | 61                  | 61                  | 28                  | 30                  | 30                  | 48             |
|                                    | 110/50                              | 17                  | 104                 | 91                  | 28                  | 60                  | 32                  | 58             |
|                                    | 110/110                             | 25                  | 134                 | 134                 | 57                  | 62                  | 62                  | 58             |

| ПЕРЕХОД РЕДУКЦИОННЫЙ |    |                     |                     |                     |                |
|----------------------|----|---------------------|---------------------|---------------------|----------------|
|                      |    | D <sub>1</sub> , мм | D <sub>2</sub> , мм | Z <sub>1</sub> , мм | t <sub>e</sub> |
|                      | 40 | 32                  | 23                  | 47                  |                |
|                      |    | 50                  | 40                  | 12                  | 48             |
|                      |    | 110                 | 50                  | 40                  | 58             |

| ТРОЙНИК                             |                                     |                     |                     |                     |                     |                     |                     |                |
|-------------------------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------|
| D <sub>1</sub> /D <sub>2</sub> , мм | 2 /2                                | a = 45°             |                     | a = 87°30           |                     |                     |                     |                |
|                                     | D <sub>1</sub> /D <sub>2</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | Z <sub>1</sub> , мм | Z <sub>2</sub> , мм | Z <sub>3</sub> , мм | t <sub>e</sub> |
|                                     | 32/32                               | 8                   | 37                  | 37                  | 19                  | 21                  | 21                  | 47             |
|                                     | 40/32                               | 4                   | 41                  | 40                  | 19                  | 24                  | 21                  | 47             |
| 1- P/                               | 40/40                               | 10                  | 49                  | 49                  | 23                  | 25                  | 25                  | 47             |
|                                     | 50/40                               | 5                   | 56                  | 54                  | 23                  | 30                  | 25                  | 48             |
|                                     | 50/50                               | 12                  | 61                  | 61                  | 28                  | 30                  | 30                  | 48             |
| -21                                 | 110/50                              | 17                  | 104                 | 91                  | 28                  | 60                  | 32                  | 58             |
| , Di                                | 110/110                             | 25                  | 134                 | 134                 | 57                  | 62                  | 62                  | 58             |





| КОМПЕНСАЦИОННЫЙ ПАТРУБОК |                     |       |                     |  |  |
|--------------------------|---------------------|-------|---------------------|--|--|
|                          | D <sub>1</sub> , мм | l, мм | t <sub>e</sub> , mm |  |  |
|                          | 50                  | 60    | 48                  |  |  |
|                          | 110                 | 72    | 58                  |  |  |

#### 3. ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ И ОПИСАНИЕ СИСТЕМЫ SML

#### 3.1. SML — система безраструбных труб из чугуна

Литейный чугун является классическим материалом для канализационных труб, применяемых в зданиях.

SML — система безраструбных труб из литейного чугуна, окончательно пришедшая на смену раструбным трубам в 1982 году. Испытанное сырье, удобные в использовании фитинги и надежные соединения образуют малогабаритную, надежную в эксплуатации и износостойкую систему, которая полностью соответствует высоким требованиям современного качества жилья и технического оснащения зданий, а также выполняет такие важные требования безопасности, как звукоизоляция и противопожарная защита.

Техническое качество SML-системы способствовало тому, что важнейшие участки дренажных систем зданий [канализация, магистральный (главный) трубопровод, а также дождевая канализация, пролегающая внутри здания] изготавливаются, как правило, из литейного чугуна.

| Свойства материала                                                         |                                                                                                 |                                                                                                |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| <b>Плотность</b><br>примерно 7,2 кг/дм³ (71,5 кН/г³ )                      | Ударная прочность<br>(пик прочности на сжатие) S 350 МПа                                        | <b>Коэффициент линейного расширения</b><br>только 0,0105 мм/мК (между 0 и 100°C) соответствует |  |  |
| Минимальная прочность на разрыв<br>^150 МПа для фитингов ^200 МПа для труб | <b>Модуль упругости</b><br>от 8 . 10 <sup>4</sup> до 12 . 10 <sup>4</sup> Н/мм²                 | коэффициенту линейного расширения бетона; возможна<br>укладка в бетон                          |  |  |
| Прочность на сжатие примерно 3—4-кратная величина прочности на разрыв      | Коэффициент Пуассона<br>~(0,3)                                                                  |                                                                                                |  |  |
| Прочность на срез                                                          | <b>Коэффициент теплопередачи</b><br>50–60 Вт/мК (при 20°C)                                      | Химическая стойкость  SML высокоустойчивы по отношению к стокам зданий  с pH от 2 до 12        |  |  |
| примерно 1,1—1,6-кратная величина прочности на<br>разрыв                   | Термическая стойкость  SML соответствует классу горения A2 в соответствии с EN 13501 — не горит | . "                                                                                            |  |  |

<sup>\*</sup>Проверено соответствие систем канализационных труб стандарту EN-877, приложение F.2 которого подтверждает: «Чугунные изделия в соответствии с этой европейской нормой не являются горючими и воспламеняющимися. В случае пожара они сохраняют свои функциональные свойства и свою надежность в течение нескольких часов, то есть их стенки остаются герметичными по отношению к пламени, газам, не претерпевая значительных деформаций и изломов. Целостность проемов в стенах и перекрытиях сохраняется».

#### 3.2. Преимущества чугунной системы канализации



Звукоизоляция бесшумный слив волы



Предохранительные противопожарные меры SML трубы и фитинги являются негорючими



Нечувствительны к высоким и низким температурам — незначительное тепловое расширение (0,0105 мм/м<sup>к</sup>) соответствует показателям бетона. Благодаря этому возможна укладка в бетон



Простой, универсальный монтаж без специального инструмента



100%-ное вторичное использование — нет проблем, связанных с утилизацией отходов



Не растрачиваются ресурсы (источники сырья) продукция SML состоит преимущественно из железного лома



Внутреннее покрытие с защитным слоем — высококачественным двухкомпонентным составом



Наилучшая защита фитингов от коррозии с помощью усовершенствованного покрытия эпоксидной смолой



**Экономия времени** — быстрый монтаж с помощью разъемов



Высокая прочность намного превосходит требования стандарта EN 877



Высокая износоустойчивость — превосходная обтекаемость благодаря гладкой поверхности



Стабильная и сохраняющая форму, ударопрочная

#### 3.3. Контроль качества

Сертифицированная система обеспечения качества и гарантия качества чугунных канализационных труб, фитингов и соединителей являются нашими постоянными приоритетами в производстве.

#### 3.4. Требования и контроль

| Требования в соответствии с:               | EN 877                              |  |
|--------------------------------------------|-------------------------------------|--|
| солевой туман                              | 350 часов                           |  |
| устойчивость к сточным водам               | 30 дней при 23 °C                   |  |
| устойчивость к химическим веществам        | от pH 2 до pH 12, 30 дней при 23 °C |  |
| испытания на стойкость к термоциклированию | 1500 циклов от 15 и до 93 °C        |  |

<sup>\*</sup>Типичный состав сточных вод смотри EN 877:1999/A1:2006, раздел 5.7.2.2, табл. 5.

#### 3.5. Технология нанесения покрытий на трубы SML и фитинги

Трубы SML и фитинги покрываются высококачественным красно-бурым покрытием из эпоксидной смолы. Нанесение покрытия эпоксидной смолой на внутреннюю и внешнюю поверхность фитингов происходит методом полного погружения, после чего фитинги обжигаются на протяжении 45 минут при 180 °C. Благодаря этому возникает высокопрочное соединение между фитингом и покрытием, а также сопротивляемость к термическим и химическим воздействиям, которая превышает очень строгие нормы стандартов EN 877.

Трубы SML покрыты красно-коричневой грунтовкой толщиной в 40 микрон в соответствии с действующим стандартом EN 877, в случае необходимости на грунтовку могут быть нанесены стандартные органические лаки и многослойное лакокрасочное покрытие. Покрытие на внутреннюю поверхность напыляется сетчатым эпоксидным материалом цвета охры и надежно защищает трубу от агрессивных стоков.

Трубы SML соответствуют требованиям ГОСТ 6942-98 "Трубы чугунные канализационные и фасонные части к ним".

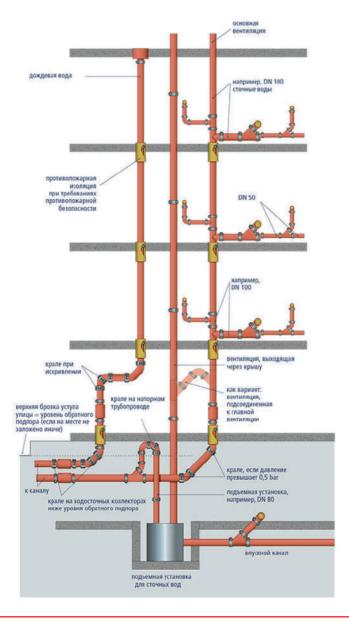
#### Маркировка

- 1. Маркировка завода-изготовителя.
- 2. EN 877— наименование стандарта, согласно которому изготовлена продукция.
- 3. Номинальный диаметр и угол наклона тройника.
- 4. Дата производства изделия.



## 3.6. Инструкция по монтажу

SML-трубы, фитинги и соединительные системы изготавливаются и контролируются в соответствии со стандартом EN-877. Трубы SML разрезаются потребителями в соответствии с желаемой длиной. Трубы и фитинги соединяются соответствующими хомутами.


Горизонтальные трубопроводы должны быть достаточно закреплены во всех местах изменения направления и ответвлениях. Спускной трубопровод (стояки) необходимо закреплять с максимальным интервалом в 2 м. В зданиях высотностью до пяти этажей стояки от DN 100 необходимо фиксировать от оседания с помощью опоры стояка. Кроме того, в зданиях большей этажности необходимо встраивать на каждом пятом этаже опору стояка.

Трубопроводы для сточных вод основаны по принципу безнапорных. Однако это не исключает, что при определенных эксплуатационных состояниях возможно возникновение давления в трубопроводах. Поэтому трубопроводы для сточных вод и вентиляционные трубопроводы должны выдерживать давление и сохранять постоянную герметичность при внутреннем и внешнем избыточном давлении в пределах от 0 до 0,5 бара при возможном взаимодействии между трубопроводом и его внешними условиями. Для того чтобы выдержать это давление, части трубопровода должны быть соединены, установлены и закреплены осевым силовым замыканием.

Следует обратить внимание, что в трубопроводах для сточных вод может возникнуть более высокое внутреннее давление, чем 0,5 бара, например, в:

- коллекторах дождевой канализации;
- трубопроводах в зонах обратного подпора;
- сточных трубопроводах, пролегающих более чем через одно основание, без дальнейшего выпуска;
- напорных трубопроводах по перекачке сточных вод.

Трубопроводы с соединениями без осевого силового замыкания, в которых планомерно возникает или может возникнуть в эксплуатационном состоянии внутреннее давление, необходимо надежно закрепить прежде всего при изменениях направления с помощью соответствующих креплений против соскальзывания и сдвига оси. Требуемое осевое силовое замыкание достигается в трубах SML и фитингах SML с помощью укрепления соединений дополнительными манжетами (крале) (внутреннее давление до 10 бар).



## 4. ОБЗОР ПРОДУКЦИИ

## 4.1. Конструктивные размеры: трубы, фитинги, соединения

| Номинальный                  | Нару | жный диаметр, мм             |     | Толщина стены, мм                                    | Длина                              | Вес т                          | Вес трубы                                      |                                          |  |
|------------------------------|------|------------------------------|-----|------------------------------------------------------|------------------------------------|--------------------------------|------------------------------------------------|------------------------------------------|--|
| внутренний<br>диаметр DN, мм | DE   | допустимое<br>отклонение, мм | е   | трубы и фасонные части,<br>допустимое отклонение, мм | вхождения,<br>зона<br>уплотнения t | пустая—<br>приблизительно кг/м | наполненная полностью<br>— приблизительно кг/м | Поверхность<br>приблизительно<br>м² на м |  |
| 50                           | 58   | . 2 / 4                      | 3,5 | -0,5                                                 | 30                                 | 4,3                            | 6,4                                            | 0,18                                     |  |
| 100                          | 110  | + 2 / -1                     | 3,5 | -0,5                                                 | 40                                 | 8,5                            | 16,7                                           | 0,35                                     |  |
| 150                          | 160  | + 2 / -2                     | 4,0 | -0,5                                                 | 50                                 | 14,2                           | 32,2                                           | 0,50                                     |  |
| 200                          | 210  |                              | 5,0 | -1,0                                                 | 60                                 | 23,3                           | 54,5                                           | 0,65                                     |  |
| 250                          | 274  | + 2,5 / -2,5                 | 5,5 | -1,0                                                 | 70                                 | 33,5                           | 87,6                                           | 0,85                                     |  |
| 300                          | 326  |                              | 6,0 | -1,0                                                 | 80                                 | 43,6                           | 120,6                                          | 1,02                                     |  |

## 4.2. SML-трубы и фасонные части

| Труба 3000 мм        | Чертеж | DN  | кг/шт. |
|----------------------|--------|-----|--------|
|                      |        | 50  | 13,0   |
| VAXT SML DN100 EN877 |        | 100 | 25,4   |
|                      |        | 150 | 42,5   |
|                      |        | 200 | 69,8   |
|                      |        | 250 | 102,5  |
|                      |        | 300 | 130,7  |

| Отвод 15° | Чертеж | DN  | кг/шт. | X  |
|-----------|--------|-----|--------|----|
| _         | 1      | 50  | 0,4    | 40 |
|           | ×      | 100 | 1,0    | 50 |
|           |        | 150 | 2,5    | 65 |
|           | 15°    | 200 | 4,6    | 80 |

| Отвод 22° | Чертеж | DN  | кг/шт. | Х  |
|-----------|--------|-----|--------|----|
|           | X 22°  | 100 | 1,3    | 50 |

| Отвод 30° | Чертеж | DN  | кг/шт. | Х   |
|-----------|--------|-----|--------|-----|
|           |        | 50  | 0,5    | 45  |
|           | 30°    | 100 | 1,3    | 60  |
|           |        | 150 | 3,0    | 80  |
|           |        | 200 | 5,4    | 95  |
|           |        | 250 | 9,7    | 110 |
|           |        | 300 | 15,5   | 130 |

| Отвод 45° | Чертеж | DN  | кг/шт. | Х   |
|-----------|--------|-----|--------|-----|
|           |        | 50  | 0,5    | 50  |
|           | *      | 100 | 1,6    | 70  |
|           | 45°    | 150 | 3,5    | 90  |
|           |        | 200 | 5,7    | 110 |
|           |        | 250 | 10,3   | 130 |
|           |        | 300 | 16,5   | 155 |

| Отвод 68° | Чертеж | DN  | кг/шт. | Х   |
|-----------|--------|-----|--------|-----|
|           |        | 50  | 0,7    | 65  |
|           | * ( )  | 100 | 1,9    | 90  |
|           |        | 150 | 4,3    | 120 |
|           | 70°    | 200 | 7,7    | 145 |

| Отвод 88° | Чертеж | DN  | кг/шт. | Х     |
|-----------|--------|-----|--------|-------|
|           |        | 50  | 0,7    | 65    |
|           | * ( 1  | 100 | 1,9    | 90    |
|           |        | 150 | 4,3    | 120   |
|           | ×      | 200 | 7,7    | 145   |
|           | 88°    | 300 | 28     | 262,6 |

| Отвод с удлиненным коленом 45° | Чертеж                             | DN  | кг/шт. | X1  | X2 | K   |
|--------------------------------|------------------------------------|-----|--------|-----|----|-----|
|                                | К<br>Х <sub>2</sub> Х <sub>1</sub> | 100 | 4,2    | 250 | 70 | 180 |

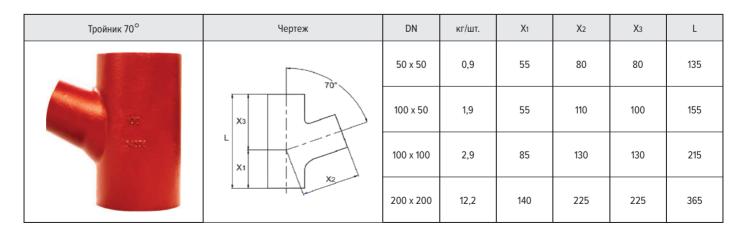
| Отвод с удлиненным коленом 88° | Чертеж      | DN  | кг/шт. | X1  | X2 | К   |
|--------------------------------|-------------|-----|--------|-----|----|-----|
|                                | 88° K X2 X1 | 100 | 4,2    | 250 | 70 | 180 |

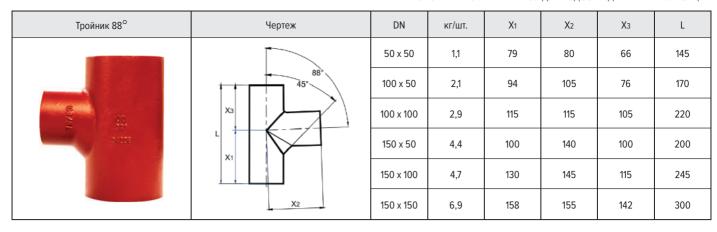
| Двойное колено 88°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Чертеж   | DN  | кг/шт. | X1 | X2  | К   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|--------|----|-----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X1 X3 X5 | 50  | 1,0    | 50 | 100 | 121 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 100 | 3,2    | 70 | 140 | 170 |
| Comment of the Commen | X2 X1 44 | 150 | 6,2    | 90 | 180 | 219 |

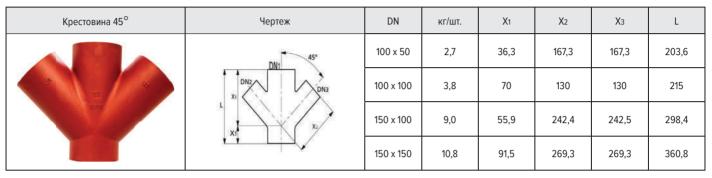
| Колено с успокоительным участком 88° | Чертеж | DN  | кг/шт. | X1 | X2  | К   |
|--------------------------------------|--------|-----|--------|----|-----|-----|
|                                      | X5 X5  | 100 | 4,8    | 70 | 312 | 291 |
|                                      | X2 441 | 150 | 9,6    | 90 | 334 | 326 |

| Опорная труба для стояков без<br>опорного кольца | Чертеж | DN  | кг/шт. | D     | L   |
|--------------------------------------------------|--------|-----|--------|-------|-----|
|                                                  | D +    | 50  | 1,3    | 87    | 200 |
| 25<br>3420                                       |        | 100 | 2,7    | 145   | 200 |
| 54290                                            |        | 150 | 4,0    | 195   | 200 |
|                                                  |        | 200 | 5,9    | 245   | 200 |
|                                                  |        | 250 | 18,7   | 340   | 300 |
|                                                  |        | 300 | 24,0   | 329,3 | 525 |

| Опорное кольцо с вулканизированной<br>резиной | Чертеж         | DN  | кг/шт. | D1    | D2    | А     | В     | С    |
|-----------------------------------------------|----------------|-----|--------|-------|-------|-------|-------|------|
|                                               |                | 50  | 0,8    | 61    | 93    | 195   | 148   | 25   |
|                                               |                | 100 | 1,4    | 115   | 147   | 250   | 202   | 28   |
|                                               |                | 150 | 2,0    | 163   | 199   | 300   | 252   | 30   |
|                                               | <del>(()</del> | 200 | 3,0    | 215   | 250   | 360   | 310   | 30   |
|                                               | 5              | 250 | 6,0    | 288   | 347,5 | 446,4 | 395,9 | 24,4 |
|                                               | 'Ψ             | 300 | 9,5    | 340,5 | 401   | 500   | 449,5 | 30   |


| Ревизия с квадратной крышкой | Чертеж  | DN  | кг/шт. | Н   | С   | d   | А   | F   | L   |
|------------------------------|---------|-----|--------|-----|-----|-----|-----|-----|-----|
|                              | 100     | 7,0 | 83     | 160 | 100 | 200 | 230 | 340 |     |
| 5- 0 4                       | G G     | 150 | 12,8   | 112 | 215 | 150 | 250 | 280 | 395 |
|                              | L A F H | 200 | 25,2   | 137 | 265 | 200 | 300 | 330 | 465 |
| - • •                        |         | 250 | 36,5   | 170 | 330 | 259 | 350 | 426 | 570 |
|                              |         | 300 | 51,0   | 195 | 380 | 309 | 400 | 476 | 640 |


| Ревизия с крышкой | Чертеж | DN  | кг/шт. | Н    | d1  | d2  | L   |
|-------------------|--------|-----|--------|------|-----|-----|-----|
|                   |        | 50  | 2,3    | 59   | 53  | 105 | 190 |
| L -0-1            | D d2   | 100 | 4,8    | 84   | 104 | 159 | 260 |
|                   |        | 150 | 11,5   | 86,2 | 153 | 171 | 323 |


| Торцевая заглушка | Чертеж                                | DN  | кг/шт. | L  |
|-------------------|---------------------------------------|-----|--------|----|
|                   |                                       | 50  | 0,3    | 30 |
| 1000              |                                       | 100 | 0,8    | 40 |
| VAXTEIIL<br>ENS77 |                                       | 150 | 1,6    | 80 |
|                   |                                       | 200 | 3,1    | 60 |
| 110522            | · · · · · · · · · · · · · · · · · · · | 250 | 6,0    | 70 |
|                   |                                       | 300 | 9,5    | 80 |

| Переходник внецентренный                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Чертеж      | DN      | кг/шт. | А  | L   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--------|----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 100/50  | 0,9    | 25 | 80  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 150/50  | 2,0    | -  | -   |
| SEAL STATE OF THE PARTY OF THE  |             | 150/100 | 2,2    | 25 | 105 |
| BSEITBY PAYOR TO STATE OF THE S |             | 200/100 | 4,1    | 50 | 115 |
| Mellam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 200/150 | 4,3    | 25 | 125 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> | 250/150 | 6,8    | 57 | 140 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A           | 250/200 | 7,0    | 32 | 145 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 300/200 | 11,4   | 58 | 160 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 300/250 | 12,4   | 26 | 170 |

| Тройник 45°  | Чертеж  | DN        | кг/шт. | X1  | X2  | Х3  | L   |
|--------------|---------|-----------|--------|-----|-----|-----|-----|
|              |         | 50 x 50   | 1,4    | 50  | 135 | 135 | 185 |
|              |         | 100 x 50  | 2,3    | 35  | 165 | 165 | 200 |
|              |         | 100 x 100 | 4,4    | 70  | 205 | 205 | 275 |
|              |         | 150 x 100 | 6,5    | 55  | 240 | 240 | 295 |
|              | 45°     | 150 x 150 | 8,3    | 90  | 265 | 265 | 355 |
|              |         | 200 x 100 | 10,0   | 40  | 265 | 265 | 305 |
| 105          | L X3    | 200 x 150 | 13,3   | 75  | 300 | 300 | 375 |
| 196<br>04411 |         | 200 x 200 | 17,7   | 115 | 340 | 340 | 455 |
| 348.43       | X2/     | 250 x 100 | 13,6   | 15  | 310 | 310 | 325 |
|              | X1      | 250 x 200 | 20,4   | 90  | 385 | 385 | 475 |
| P            | 1 1 1 1 | 250 x 250 | 31,5   | 130 | 430 | 430 | 560 |
|              |         | 300 x 200 | 30,0   | 70  | 440 | 415 | 485 |
|              |         | 300 x 250 | 36,9   | 115 | 465 | 465 | 580 |
|              |         | 300 x 300 | 48,2   | 155 | 505 | 505 | 660 |







| Крестовина двухплоскостная 88° | Чертеж      | DN              | кг/шт. | X1  | X2  | <b>X</b> 3 | L   |
|--------------------------------|-------------|-----------------|--------|-----|-----|------------|-----|
|                                | 88° DN1 DN3 | 100 x 100 x 100 | 3,4    | 115 | 120 | 105        | 220 |
| 3                              | X1 N2 90°   | 150 x 100 x 100 | 6,1    | 130 | 130 | 145        | 245 |

| Крестовина 68°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Чертеж          | DN              | кг/шт. | X1 | X2  | <b>X</b> 3 | L   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--------|----|-----|------------|-----|
| The second secon | DN1 68°  X2 DN2 | 100 x 100 x 100 | 3,6    | 85 | 130 | 130        | 215 |

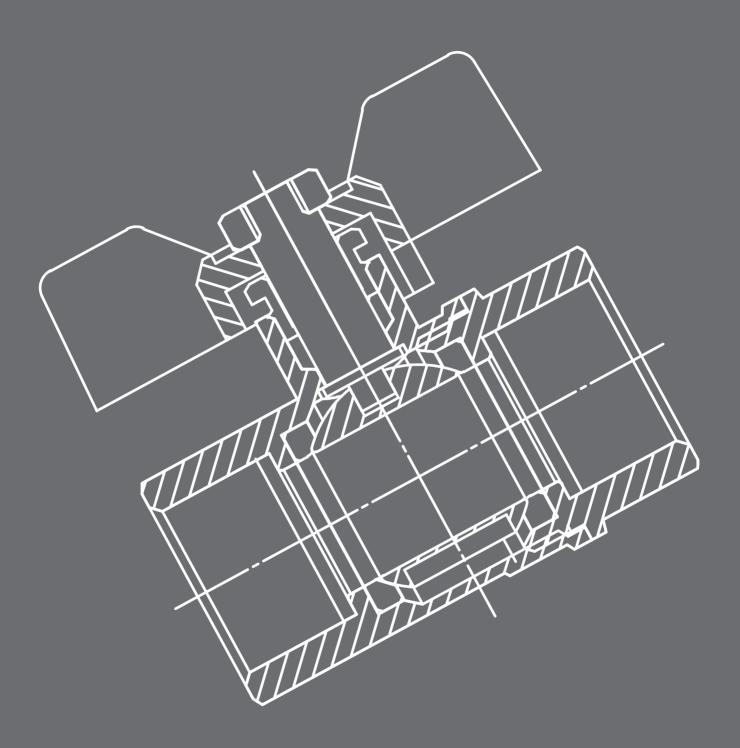
| Канализационный сифонный<br>затвор | Чертеж       | DN  | кг/шт. | 1   | h   | X1  | X2  | Х3  | X4  | W   |
|------------------------------------|--------------|-----|--------|-----|-----|-----|-----|-----|-----|-----|
|                                    | <del> </del> | 50  | 2,9    | 190 | 250 | 182 | 68  | 122 | 68  | 60  |
|                                    | X3 X4 X2 X2  | 100 | 9,5    | 325 | 392 | 282 | 110 | 215 | 110 | 100 |
|                                    | h x1         | 150 | 21,8   | 470 | 493 | 348 | 145 | 325 | 145 | 100 |
|                                    | ++ 7+4       | 200 | 38,4   | 600 | 600 | 420 | 180 | 400 | 200 | 100 |

| Фланцевый переход | Чертеж | DN   | кг/шт. | D1    | D2    | K     | В    |
|-------------------|--------|------|--------|-------|-------|-------|------|
|                   | D1 —   | 100  | 7,3    | 222,2 | 19,3  | 181,8 | 20,2 |
| D <sub>2</sub>    | 150    | 12,0 | 287,8  | 23,3  | 242,4 | 21,3  |      |

## 4.3. Конструктивные размеры: трубы, фитинги, соединения

#### Осевое силовое замыкание

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ое силово |     | DN и давле | ение (бар) |     |     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|------------|------------|-----|-----|
| Наименование         | Изображение                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50        | 100 | 150        | 200        | 250 | 300 |
| Соединитель<br>Rapid |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,5       | 0,5 | 0,5        | 0,5        | 0,3 | 0,3 |
| Зажим<br>Rapid крале |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | 7   | 4          | 3          | -   | -   |
| Переход<br>Konfix    | Control of the second of the s |           |     | -          |            |     |     |


| Coeдинитель Rapid с уплотнительной прокладкой EPDM                                                                                                                                 | Изображение | DN  | Кол-во шт.<br>в уп. | Момент<br>затяжки Нм |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---------------------|----------------------|
| Продукция, соответствующая стандарту DIN EN877     Материал: хромистая сталь 1.4520                                                                                                |             | 50  | 100                 |                      |
| Высокая защита от коррозии благодаря специальному покрытию соединительных частей                                                                                                   |             | 100 | 50                  |                      |
| <ul> <li>Осевая нагрузка до 0,5 бара внутреннего давления</li> <li>Затяжка только одним винтом (до DN100)</li> <li>Определение скоса с помощью визуального контроля без</li> </ul> |             | 150 | 25                  | 10.15                |
| специализированного инструмента  • Быстрый монтаж и демонтаж                                                                                                                       |             | 200 | 15                  | 13–15                |
| <ul> <li>Интегрированный уплотнитель из EPDM</li> <li>Высокая поперечная жесткость — возможна предварительная сборка<br/>трубопровода</li> </ul>                                   |             | 250 |                     |                      |
| Соответствует мерам противопожарной защиты в соответствии<br>со стандартом                                                                                                         |             | 300 |                     |                      |

| Зажим Rapid крале                                                                                                                           | Изображение | DN  | Кол-во шт.<br>в уп. | Момент<br>затяжки Нм |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---------------------|----------------------|
| И 204                                                                                                                                       |             | 50  | 25                  |                      |
| Материал: DD11 — оцинкован гальваническим методом предохранительная шайба осевого силового замыкания     Для внутреннего давления до 10 бар |             | 100 | 25                  |                      |
| 2 половины зажима с крале и 4 винта с внутренним шестигранником (до DN125)                                                                  |             | 150 | 10                  | 27. 20               |
| То же применение инструмента, как и для соединителя RAPID, при этом не требуется смены инструмента = экономия рабочего времени              |             | 200 |                     | 27–29                |
| Область применения: напорный (нагнетательный) трубопровод,<br>трубопроводы для дождевых и сточных вод в зонах обратного подпора             |             | 250 |                     |                      |
|                                                                                                                                             |             | 300 |                     |                      |

| Переход Konfix                                                                                                                                         | Изображение | DN  | VE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|----|
| Для перехода от других материалов (сталь или синтетический материал)     к SML     С NORMACI AMPRIORDO® (учируной долже 12 мм).                        |             | 50  | 50 |
| <ul> <li>С NORMACLAMP®TORRO® шириной ленты 12 мм</li> <li>Лента 1.4016 сильный хомут с червячной (модульной) резьбой</li> <li>Материал EPDM</li> </ul> | The second  | 100 | 20 |

Другую продукцию и техническое описание можно получить по дополнительному запросу.

# ЗАПОРНАЯ АРМАТУРА ШАРОВЫЕ КРАНЫ



## 1. ЗАПОРНАЯ АРМАТУРА, ШАРОВЫЕ КРАНЫ

Латунные шаровые краны изготавливаются с учетом всех европейских и российских норм по производству запорной арматуры для холодного, горячего водоснабжения, отопления, а также для систем питьевого водоснабжения. Краны сертифицированы согласно ГОСТ и рекомендуются для установки в качестве запорной арматуры. Среди плюсов латунных шаровых кранов, поставляемых компанией РОСТерм, можно отметить использование самого современного оборудования при производстве, применение исключительно безопасных материалов, рекомендованных органами сертификации в России и Евросоюзе, высочайшую надежность и долгий срок безаварийной эксплуатации.

При производстве шаровых кранов используется латунь марки CW 617N горячей ковки высочайшего качества согласно нормам DIN 17660 и российским ГОСТ 15527, рекомендованная СП для использования в водопроводных сетях. Вся запорная арматура изготавливается по европейским нормам ISO 228/1 и российским нормам ГОСТ 15527 и соответствует всем необходимым параметрам.

Латунные шаровые краны представлены в широком диапазоне типоразмеров от 1/2 до 2 1/2 дюйма. Также компания РОСТерм может предложить нестандартные решения (кран-фильтр) для удешевления стоимости проектов и удобства монтажа при использовании запорной арматуры.

## 1.1. Технические характеристики латунных шаровых кранов

Шаровые краны производятся из высококачественной латуни марки CW 617N по DIN 17660, соответствующей марке ЛС 59-2 согласно ГОСТ 15527— специально созданный сплав латуни для систем водоснабжения и отопления, обладают герметичностью класса A согласно ГОСТ Р 59553-2021 «Краны шаровые из латуни». Имеют высокие предельные температурные режимы внешней среды от -60 до +120 °C, а также высокие предельные показатели температуры рабочей среды до + 160 °C.

| T <sub>max</sub> | Максимальная<br>температура | 160 °C  |
|------------------|-----------------------------|---------|
| Т                | Рабочая температура         | 120 °C  |
| PN               | Номинальное давление        | ≥16 бар |



## 2. НОМЕНКЛАТУРА

## 2.1. Кран шаровой латунный внутренняя-внутренняя резьба



Сделан из латуни согласно DIN 17660

Резьба BP-BP соответствует ISO 228/1

Управление посредством ручки-рычага/бабочки

Максимальная температура 160 °C

| N°  | Обозначение                                         | Чертеж  |
|-----|-----------------------------------------------------|---------|
| 1/2 | Корпус — никелированная латунь                      |         |
| 3   | Затворный шар — никелированная латунь               |         |
| 4   | Шток — никелированная латунь                        |         |
| 5   | Уплотнение седла затворного шара — PTFE             |         |
| 6   | Уплотнение штока — PTFE                             |         |
| 7   | Уплотнительное кольцо — N.B.R.                      |         |
| 8   | Кольцо штока — латунь                               |         |
| 9   | Гайка — никелированная латунь                       |         |
| 10  | Рычаг — нержавеющая сталь, ручка-бабочка — алюминий | Ø Ø Ø Ø |

#### Технические характеристики

| Размер, дюйм | Номинальное давление, бар | Условный проход, мм | Тип ручки | Артикул        |
|--------------|---------------------------|---------------------|-----------|----------------|
| 1/2"         | 50                        | 15                  |           | ШКР ВР-ВР 1/2  |
| 3/4"         | 50                        | 20                  | Бабочка   | ШКР ВР-ВР 3/4  |
| 1"           | 40                        | 25                  |           | ШКР ВР-ВР 1    |
| 1 1/4"       | 40                        | 32                  |           | ШКР ВР-ВР 11/4 |
| 11/2"        | 32                        | 40                  | Рычаг     | ШКР ВР-ВР 11/2 |
| 2"           | 32                        | 50                  |           | ШКР ВР-ВР 2    |

## 2.2. Кран шаровой латунный наружная-внутренняя резьба



Сделан из латуни согласно DIN 17660

Резьба HP-BP соответствует ISO 228/1

Управление посредством ручки-рычага/бабочки

Максимальная температура 160 °C

| N°  | Обозначение                                         | Чертеж   |
|-----|-----------------------------------------------------|----------|
| 1/2 | Корпус — никелированная латунь                      | 9 9 9    |
| 3   | Затворный шар — никелированная латунь               |          |
| 4   | Шток — никелированная латунь                        | 0        |
| 5   | Уплотнение седла затворного шара — PTFE             |          |
| 6   | Уплотнение штока — PTFE                             |          |
| 7   | Уплотнительное кольцо — N.B.R.                      |          |
| 8   | Кольцо штока — латунь                               |          |
| 9   | Гайка — никелированная латунь                       |          |
| 10  | Рычаг — нержавеющая сталь, ручка-бабочка — алюминий | <u>③</u> |

#### Технические характеристики

| Размер, дюйм | Номинальное давление, бар | Условный проход, мм | Тип ручки | Артикул        |
|--------------|---------------------------|---------------------|-----------|----------------|
| 1/2"         | 50                        | 15                  |           | ШКР ВР-НР 1/2  |
| 3/4"         | 50                        | 20                  | Бабочка   | ШКР ВР-НР 3/4  |
| 1"           | 40                        | 25                  |           | ШКР ВР-НР 1    |
| 1 1/4"       | 40                        | 32                  |           | ШКР ВР-НР 11/4 |
| 1 1/2"       | 32                        | 40                  | Рычаг     | ШКР ВР-НР 11/2 |
| 2"           | 32                        | 50                  |           | ШКР ВР-НР 2    |

## 2.3. Кран шаровой латунный с накидной гайкой наружная-внутренняя резьба

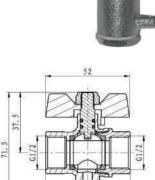


Сделан из латуни согласно DIN 17660

Резьба HP-BP соответствует ISO 228/1

Управление посредством ручки-бабочки/рычага

Максимальная температура 160 °C


| N°  | Обозначение                                         | Чертеж           |
|-----|-----------------------------------------------------|------------------|
| 1/2 | Корпус — никелированная латунь                      |                  |
| 3   | Затворный шар — никелированная латунь               | (8) (9) (4) (13) |
| 4   | Шток — никелированная латунь                        | 0                |
| 5   | Уплотнение седла затворного шара — PTFE             | 6                |
| 6   | Уплотнение штока — PTFE                             |                  |
| 7   | Уплотнительное кольцо — N.B.R.                      | <b>₩</b>         |
| 8   | Кольцо штока — латунь                               |                  |
| 9   | Гайка — никелированная латунь                       | 2 3 5 1 10       |
| 10  | Рычаг — нержавеющая сталь, ручка-бабочка — алюминий |                  |

#### Технические характеристики

| Размер, дюйм | Номинальное давление, бар | Условный проход, мм | Тип ручки | Артикул      |
|--------------|---------------------------|---------------------|-----------|--------------|
| 1/2"         | 50                        | 15                  |           | ШКР НГ 1/2   |
| 3/4"         | 50                        | 20                  | Бабочка   | ШКР НГ 3/4   |
| 1"           | 40                        | 25                  |           | ШКР НГ 1     |
| 1 1/4"       | 40                        | 32                  | Рычаг     | ШКР НГ 1 1/4 |

## 2.4. Кран шаровой латунный внутренняя-внутренняя резьба под термодатчик





Сделан из латуни согласно DIN 17660

Резьба BP-BP соответствует ISO 228/1

Управление посредством ручки-бабочки

Максимальная температура 160 °C

#### Технические характеристики

| Размер, дюйм | Номинальное<br>давление, бар | Условный<br>проход, мм | Тип ручки | Артикул               |
|--------------|------------------------------|------------------------|-----------|-----------------------|
| 1/2"         | 50                           | 15                     | F-6       | ШКР НИП ВР-ВР<br>1/2" |
| 3/4"         | 50                           | 20                     | Бабочка   | ШКР НИП ВР-ВР<br>3/4" |

## 2.5. Латунный Ү-образный сетчатый фильтр



Сделан из латуни согласно DIN 17660

Резьба BP-BP соответствует ISO 228/1

Максимальное рабочее давление 16 кг/см<sup>2</sup>

| N° | Обозначение                         | Чертеж |
|----|-------------------------------------|--------|
| 1  | Корпус — латунь                     | 2 3    |
| 2  | Заглушка — латунь                   |        |
| 3  | Уплотнительное кольцо — N.B.R.      |        |
| 4  | Фильтр — нержавеющая сталь AISI 304 |        |

#### Технические характеристики

| Размер, дюйм | Сетка* | Артикул   |
|--------------|--------|-----------|
| 1/2"         |        | ФСЛ 1/2   |
| 3/4"         |        | ФСЛ 3/4   |
| 1"           | 400 -  | ФСЛ1      |
| 1 1/4"       | 400 p  | ФСЛ 1 1/4 |
| 1 1/2"       |        | ФСЛ 1 1/2 |
| 2"           |        | ФСЛ 2     |

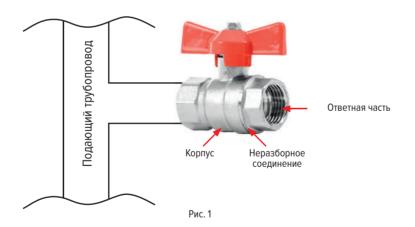
<sup>\*</sup> Размер ячеек фильтрующей сетки в микронах.

## 2.6. Общее руководство по монтажу и эксплуатации латунных шаровых кранов

#### 1. Монтажная инструкция

Для проведения качественного монтажа следует использовать надлежащий инструмент. Установите подходящий гаечный ключ на муфте, обращенной к трубе или фитингу. Зафиксируйте трубу/фитинг подходящим инструментом и вкрутите/накрутите на резьбу шарового крана. Во время работы не допускайте перетягивания муфты из-за избытка уплотняющего материала (например, льна и т. п.)

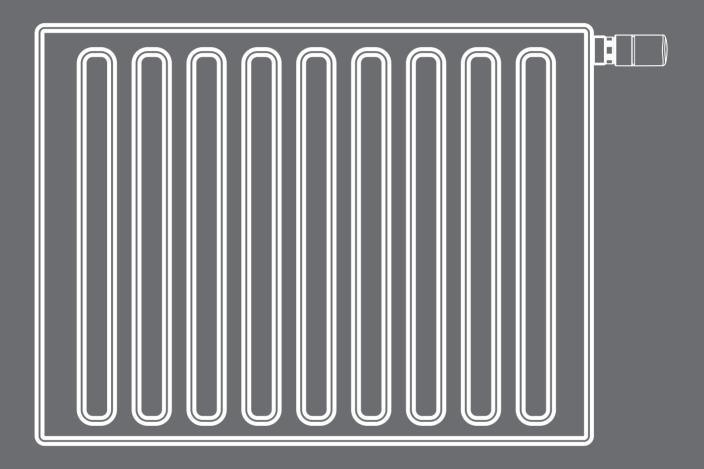





#### 2. Монтаж шарового крана

Шаровой кран рекомендуется устанавливать корпусом к подающему трубопроводу (см. рис. 1).

Трубопровод должен быть проложен согласно проекту и действующей нормативной документации, а также не допускается воздействия на шаровой кран механических напряжений.


При монтаже не рекомендуется использование «газовых» ключей для предотвращения деформации корпуса крана. Рекомендуется использование затяжных ключей с регулируемым моментом.



#### 3. Рекомендации по эксплуатации

- Шаровой кран запирается по часовой стрелке и открывается в обратном направлении, угол поворота составляет 90°. Шаровые краны имеют только два рабочих положения: полностью открыт или полностью закрыт. Когда ручка расположена вдоль трубопровода шаровой кран открыт, поперек закрыт.
- Использование шаровых кранов в качестве регулирующей арматуры (в любом промежуточном положении) ведет к сокращению срока службы и к выходу крана из строя.
- Если шаровой кран имеет сальник, то он может быть подтянут в случае возникновения негерметичности штока.
- Открывайте и закрывайте шаровой кран медленно, чтобы избежать гидравлических ударов в трубопроводной системе. Не допускается проведения монтажных работ на работающей системе.
- В длинных трубопроводах обязательно следует устанавливать компенсационные колена, компенсаторы или компенсационные муфты для уравнивания температурного удлинения труб.
- При опрессовке давлением контролируйте правильность монтажа шарового крана.

## СТАЛЬНЫЕ ПАНЕЛЬНЫЕ РАДИАТОРЫ



## 1. ХАРАКТЕРИСТИКА СТАЛЬНЫХ ПАНЕЛЬНЫХ РАДИАТОРОВ РОСТЕРМ

## 1.1. Характеристика

Стальные панельные радиаторы марки РОСТерм соответствуют ГОСТ 31311-2022. Сталь для производства радиаторов РОСТерм соответствует ГОСТ 19904 и европейскому стандарту EN10130.

| Размер соединения                      | Дюймы   | 1/2 BP             |
|----------------------------------------|---------|--------------------|
| Максимальное рабочее давление          | Бар     | 9.5                |
| Длительность испытания                 | Секунды | 30                 |
| Испытательное давление                 | Бар     | 14,25 <sup>*</sup> |
| Длительность испытания                 | Секунды | 30                 |
| Максимальная температура теплоносителя | °C      | 110                |
| Содержание кислорода в воде, не более  | мкг/дм³ | 20                 |
| Допустимые значения рН воды            | -       | 8,0-9.5            |

<sup>\*</sup> Испытания на объектах уже установленных приборов осуществляются в соответствии с существующими нормами РФ (СП 73.13330.2012 «Правилами подготовки и проведения отопительного сезона в г. Санкт-Петербурге»), гидростатическим методом.



Для радиаторов РОСТерм рекомендуется использовать термостатические клапаны и термоголовки HEIZEN

### Термостатическая арматура Heizen/POCTерм

| Тип клапана | Однотрубная система | Двухтрубная система | Осевой клапан | Запорный клапан | Н-образный клапан | Термостатические<br>элементы |
|-------------|---------------------|---------------------|---------------|-----------------|-------------------|------------------------------|
| Серия       | TGD/TGS             | TVD/TVS             | TVD           | SVD/SVS         | HDD/HDS           | TW-1                         |
|             |                     | 2404/2402           |               |                 | 245/246           | TW-2                         |
| M           | 4404/4400           | 2101/2102           | 560           | 547/549         | 345/346           | TDS-4                        |
| Модель      | 1101/1102           | 500/507             |               |                 | 055/050           | TL-5                         |
|             |                     | 566/567             |               |                 | 355/356           | TC-9                         |

Более подробную информацию о продукции Heizen можно найти на сайте heizen-armaturen.ru и в каталоге Heizen.

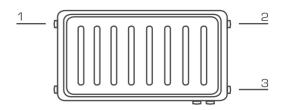
## 2. ОБЗОР МОДЕЛЕЙ РАДИАТОРОВ РОСТЕРМ

## 2.1. Модели радиаторов\*

|            | 10K.KV                                                                                                               | 20K. KV                      | 30K. KV    |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|------------|--|--|
| Тип        |                                                                                                                      | G <sub>2</sub>               |            |  |  |
| Описание   | Одна панель                                                                                                          | Две панели                   | Три панели |  |  |
| Высота, мм |                                                                                                                      | 200, 300, 400, 500, 600, 900 |            |  |  |
| Длина, мм  | до 2000                                                                                                              | до 3000                      | до 3000    |  |  |
| Ширина, мм | 46                                                                                                                   | 65                           | 155        |  |  |
| Шаг        | Шаг 100 мм по длине для радиаторов длиной до 2000 мм<br>Шаг 300 мм по длине для радиаторов длиной от 2000 до 3000 мм |                              |            |  |  |

|            | 11K.KV                                                                                                               | 21K. KV                                     | 22K. KV                                 | 33K. KV                                 |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|--|--|
| Тип        |                                                                                                                      |                                             |                                         | THURHHANDUMM.                           |  |  |
| Описание   | Одна панель<br>Одна конвективная<br>пластина                                                                         | Две панели<br>Одна конвективная<br>пластина | Две панели<br>Две конвективные пластины | Три панели<br>Три конвективные пластины |  |  |
| Высота, мм |                                                                                                                      | 200, 300, 400,                              | 500, 600, 900                           |                                         |  |  |
| Длина, мм  | до 2000                                                                                                              | до 3000                                     | до 3000                                 | до 3000                                 |  |  |
| Ширина, мм | 54                                                                                                                   | 65                                          | 100                                     | 155                                     |  |  |
| Шаг        | Шаг 100 мм по длине для радиаторов длиной до 2000 мм<br>Шаг 300 мм по длине для радиаторов длиной от 2000 до 3000 мм |                                             |                                         |                                         |  |  |

<sup>\*</sup>Более подробную информацию о размерах и технических характеристиках радиаторов смотрите в актуальной версии паспорта изделия на сайте rostherm.ru


## 2.2. Пример условного обозначения радиаторов РОСТерм

Радиатор «РОСТерм» 11 типа высотой 500 (мм), длиной 1000 (мм), с боковым подключением (К):



## 2.3. Комплектность радиатора:

- 1. Кран Маевского.
- 2. Вентильная вставка (только для радиаторов с нижним подключением KV).
- 3. Пробка глухая, с прокладкой.
- 4. Крепеж для настенного монтажа.
- 5. Также в стандартную комплектацию входит паспорт на радиатор и комплект метизов для монтажа консолей.



## 2.4. Различные виды крепежа:

### Крепеж РОСТерм

## Радиаторы всех типов комплектуются стандартным настенным крепежом:

- для радиаторов 10 типа расстояние от стены до тепловой панели - 45 мм.
- для радиаторов 11 типа расстояние от стены до решетки
   30 мм.
- для радиаторов 20; 21; 22; 30; 33 типа расстояние от стены до тепловой панели - 30/45мм.

#### Крепеж РОСТерм напольный:

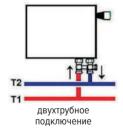
- Применяется в случаях невозможности применения настенных крепежей.
- Ко всем типам радиаторов напольный крепеж поставляется отдельно.

Радиаторы всех типов возможно комплектовать настенным крепежом твек 9.1 (заказывается отдельно) в том числе для приборов в "гигиеническом" исполнении:

- для радиаторов 10 типа расстояние от стены до тепловой панели - 40/65 мм.
- для радиаторов 11 типа расстояние от стены до решетки
   25/50 мм.
- для радиаторов 20; 21; 22; 30; 33 типа расстояние от стены до тепловой панели - 40/65мм.

Радиаторы 21; 22; 33 типа высотой 200 мм крепежом не комплектуются (заказывается отдельно)

## 2.5. Вентильная вставка для радиаторов с нижним подключением


Вентильные вставки идут по умолчанию в комплекте с радиаторами нижнего подключения (KV), имеют 6 значений преднастройки, имеют резьбовое соединение под термостатический элемент М 30 x 1,5.

| Технические характеристики    |                  |  |  |  |  |  |
|-------------------------------|------------------|--|--|--|--|--|
| Максимальное рабочее давление | 10 бар           |  |  |  |  |  |
| Максимальный перепад давления | 16ap             |  |  |  |  |  |
| Диапазон рабочей температуры  | от + 2 до 120 °C |  |  |  |  |  |

## 2.6. Правила монтажа радиаторов:

## Монтаж радиаторов ведется только на подготовленных (оштукатуренных и окрашенных) поверхностях стен

- Разметить места установки кронштейнов с учетом скоб крепления на тыльной стороне радиатора.
- Закрепить кронштейны на стене при помощи метизов для монтажа кронштейнов.
- Удалить упаковку в местах, необходимых для монтажа, и навесить радиатор на кронштейны крепления.
- Соединить радиатор с трубами системы отопления согласно проектному решению.
- Установить в один из штуцеров глухую пробку и в верхний штуцер кран Маевского для отвода воздуха.
- Заполнить радиатор теплоносителем.
- Подача теплоносителя при подключении радиаторов "РОСТерм" тип KV (правостороннее подключение) находится ближе к центру радиатора (слева).



## 2.7. Категорически запрещается

- Использовать радиаторы в открытых системах (либо в случаях, если теплоносителем служат паровые, термальные источники или неподготовленная вода).
- Установка радиатора нелицензированными специалистами.
- Слив теплоносителя из радиатора.
- Замораживание системы.

- Отключать радиатор (перекрывать верхний и нижний вентили) полностью от системы отопления, кроме аварийных случаев и в случаях сервисного обслуживания радиатора.
- Резко открывать нижний и верхний вентили радиатора, отключенного от магистрали отопления, во избежание гидравлического удара внутри радиатора и его разрыва.
- Для повышения эксплуатационной надежности радиаторы запрещается применять в системах отопления с зависимой схемой подсоединения.
- Допускать детей к играм с вентилями и воздушным клапаном.
- Использовать радиатор по иному назначению, отличному от указанного.
- Использовать трубы магистралей отопления в качестве элементов электрических сетей.
- Использовать абразивные материалы для чистки наружных и внутренних поверхностей радиатора.
- Использовать радиатор в системе, где рабочее давление превышает 9,5 бара. Использовать радиатор в системе, где максимальное допустимое давление во время испытания системы на герметичность превышает 14,25 бара.
- Устанавливать радиаторы в системе, где будут превышены допустимые значения важнейших показателей качества воды: показатель РН должен быть в пределах 8,0–9,5; содержание кислорода не должно превышать 0,1 мг/л; общее содержание хлор ионов и сульфатных ионов не должно превышать 150 мг/л ( для систем из медных труб 50 мг/л); общая жесткость воды не должна превышать 4,0 мг-экв/л.
- Использовать радиаторы во влажной среде (плавательные бассейны, сауна, теплицы и т. д.).
- Не рекомендуется использовать радиаторы в ванных комнатах.

## 2.8. Что нужно знать о радиаторах

- Диагональные расстояния должны быть одинаковыми (рис. 1).
- Боковые швы радиатора должны быть без заусенцев (рис. 2).
- Углы радиатора должны быть сглажены (рис. 3).
- Радиаторы 10, 20, 30 типа являются гигиеническими и могут использоваться на объектах с повышенными санитарными требованиями.







Рис. 2



Рис. 3

## 2.9. Методика гидравлических испытаний отопительных приборов

- 1. Заполнение системы водой и стравливание (удаление) воздуха. После завершения монтажа системы отопления она подвергается заполнению жидкостью и гидравлическому испытанию. Заполнение отопительной системы осуществляется через обратный трубопровод (снизу вверх). В данном случае жидкость и воздух двигаются в одном направлении, что способствует удалению воздуха из системы через воздуховыпускные устройства.
- 2. Равномерное (плавное) повышение давления в системе до 5 бар.
- 3. Повторное стравливание (удаление) воздуха. При давлении в системе 5 бар стравливание (удаление) воздуха из системы, через воздухоотводчики (краны Маевского каждого радиатора, автомат. воздухоотводчики и т. д.).
- 4. Заполнение прибора теплоносителем. После стравливания (удаления) воздуха из системы равномерное (плавное) повышение давления в системе до испытательного давления. Испытательное давление рассчитывается увеличением в 1,5 раза рабочего давления (СНиП СП 73.13330.1016), но не более 14,25 бара. При постепенном наполнении системы отопления жидкость равномерно поднимается вверх, за счет чего уровень жидкости в вертикальных трубопроводах и нагревательных приборах находится в одной плоскости, это содействует вытеснению воздуха из системы отопления.
- 5. Работа с запорной и регулирующей арматурой. При заполнении системы отопления теплоносителем запорную арматуру следует открывать плавно во избежание возникновения гидравлического удара, который может привести к нарушению герметичности системы и выходу из строя одного или нескольких элементов системы (отопительных приборов, запорно-регулирующей арматуры и т. д.).
- 6. Испытание гидростатическим методом проводятся длительностью не более 5 минут.

## 2.10. Преимущества радиаторов РОСТерм



#### Легкость монтажа

Упаковка радиатора РОСТерм выполнена таким образом, что монтаж можно производить без распаковки прибора. То есть упаковку можно снять после покраски помещения или после перестановки мебели, обеспечивая этим полную защиту поверхности радиатора.



#### Экологическая безопасность

Стальные панельные радиаторы и их покрытие изготовлены из экологически безопасных материалов, по российским и европейским стандартам.



#### Многолетняя служба

Панельные радиаторы не состоят из секций, в отличие от чугунных и алюминиевых приборов. Это позволяет избежать межсекционных протечек.



#### Легкий вес

Стальные радиаторы гораздо легче чугунных, что облегчает транспортировку и монтаж.



#### Большая линейка типоразмеров

Радиаторы РОСТерм имеют высоту от 200 до 900 мм и длину от 400 до 3000 мм.

## 3. НОМЕНКЛАТУРА

К (боковое подключение) и KV (нижнее подключение) с температурным режимом 105-75-20 °C (Δt 70 °C). В данной таблице указан номинальный тепловой поток (Вт) радиаторов РОСТерм К и KV по методике ГОСТ 31311-2022, ГОСТ Р 53583-2009.

#### Таблица теплоотдачи радиаторов РОСТерм

| Панна | Высота 200 |        |        |        |  |  |  |  |
|-------|------------|--------|--------|--------|--|--|--|--|
| Длина | 20 тип     | 22 тип | 30 тип | 33 тип |  |  |  |  |
| 400   | 257        | 355    | 368    | 501    |  |  |  |  |
| 500   | 321        | 444    | 459    | 626    |  |  |  |  |
| 500   | 385        | 532    | 551    | 751    |  |  |  |  |
| 700   | 449        | 621    | 643    | 876    |  |  |  |  |
| 800   | 514        | 710    | 735    | 1002   |  |  |  |  |
| 900   | 578        | 798    | 827    | 1127   |  |  |  |  |
| 1000  | 642        | 887    | 919    | 1252   |  |  |  |  |
| 1100  | 706        | 976    | 1011   | 1377   |  |  |  |  |
| 1200  | 770        | 1064   | 1103   | 1502   |  |  |  |  |
| 1300  | 835        | 1153   | 1195   | 1628   |  |  |  |  |
| 1400  | 899        | 1242   | 1287   | 1753   |  |  |  |  |
| 1500  | 963        | 1331   | 1378   | 1878   |  |  |  |  |
| 1600  | 1027       | 1419   | 1470   | 2003   |  |  |  |  |
| 1700  | 1091       | 1508   | 1562   | 2128   |  |  |  |  |
| 1800  | 1156       | 1597   | 1654   | 2254   |  |  |  |  |
| 1900  | 1220       | 1685   | 1746   | 2379   |  |  |  |  |
| 2000  | 1284       | 1774   | 1838   | 2504   |  |  |  |  |
| 2200  | 1412       | 1951   | 2022   | 2754   |  |  |  |  |
| 2300  | 1477       | 2040   | 2114   | 2880   |  |  |  |  |
| 2400  | 1541       | 2129   | 2206   | 3005   |  |  |  |  |
| 2600  | 1669       | 2306   | 2389   | 3255   |  |  |  |  |
| 2800  | 1798       | 2484   | 2573   | 3506   |  |  |  |  |
| 3000  | 1926       | 2661   | 2757   | 3756   |  |  |  |  |

| П=    | Высота 300 |        |        |        |        |        |        |  |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--|--|
| Длина | 10 тип     | 11 тип | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |
| 400   | 214        | 324    | 373    | 428    | 549    | 536    | 829    |  |  |
| 500   | 267        | 405    | 466    | 535    | 687    | 670    | 1036   |  |  |
| 600   | 320        | 486    | 560    | 642    | 824    | 804    | 1243   |  |  |
| 700   | 374        | 567    | 653    | 749    | 961    | 938    | 1450   |  |  |
| 800   | 427        | 648    | 746    | 856    | 1099   | 1073   | 1658   |  |  |
| 900   | 481        | 729    | 839    | 963    | 1236   | 1207   | 1865   |  |  |
| 1000  | 534        | 810    | 933    | 1070   | 1373   | 1341   | 2072   |  |  |
| 1100  | 587        | 891    | 1026   | 1177   | 1511   | 1475   | 2279   |  |  |
| 1200  | 641        | 972    | 1119   | 1284   | 1648   | 1609   | 2487   |  |  |
| 1300  | 694        | 1053   | 1212   | 1391   | 1786   | 1743   | 2694   |  |  |
| 1400  | 748        | 1134   | 1306   | 1497   | 1923   | 1877   | 2901   |  |  |
| 1500  | 801        | 1215   | 1399   | 1604   | 2060   | 2011   | 3108   |  |  |
| 1600  | 854        | 1296   | 1492   | 1711   | 2198   | 2145   | 3315   |  |  |
| 1700  | 908        | 1377   | 1585   | 1818   | 2335   | 2279   | 3523   |  |  |
| 1800  | 961        | 1458   | 1679   | 1925   | 2472   | 2413   | 3730   |  |  |
| 1900  | 1015       | 1539   | 1772   | 2032   | 2610   | 2547   | 3937   |  |  |
| 2000  | 1068       | 1620   | 1865   | 2139   | 2747   | 2681   | 4144   |  |  |
| 2300  | -          | -      | 2145   | 2460   | 3159   | 3084   | 4766   |  |  |
| 2600  | -          | -      | 2425   | 2781   | 3571   | 3486   | 5388   |  |  |
| 3000  | -          | -      | 2798   | 3209   | 4120   | 4022   | 6216   |  |  |

| Панна | Высота 400 |        |        |        |        |        |        |  |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--|--|
| Длина | 10 тип     | 11 тип | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |
| 400   | 273        | 427    | 466    | 557    | 709    | 704    | 1090   |  |  |
| 500   | 341        | 533    | 582    | 696    | 887    | 880    | 1363   |  |  |
| 600   | 409        | 640    | 699    | 836    | 1064   | 1056   | 1636   |  |  |
| 700   | 477        | 746    | 815    | 975    | 1241   | 1232   | 1908   |  |  |
| 800   | 545        | 853    | 932    | 1114   | 1419   | 1408   | 2181   |  |  |
| 900   | 613        | 960    | 1048   | 1254   | 1596   | 1584   | 2454   |  |  |
| 1000  | 681        | 1066   | 1165   | 1393   | 1773   | 1760   | 2726   |  |  |
| 1100  | 750        | 1173   | 1281   | 1532   | 1951   | 1936   | 2999   |  |  |
| 1200  | 818        | 1280   | 1397   | 1671   | 2128   | 2112   | 3271   |  |  |
| 1300  | 886        | 1386   | 1514   | 1811   | 2305   | 2288   | 3544   |  |  |
| 1400  | 954        | 1493   | 1630   | 1950   | 2483   | 2464   | 3817   |  |  |
| 1500  | 1022       | 1600   | 1747   | 2089   | 2660   | 2640   | 4089   |  |  |
| 1600  | 1090       | 1706   | 1863   | 2229   | 2837   | 2815   | 4362   |  |  |
| 1700  | 1159       | 1813   | 1980   | 2368   | 3015   | 2991   | 4635   |  |  |
| 1800  | 1227       | 1920   | 2096   | 2507   | 3192   | 3167   | 4907   |  |  |
| 1900  | 1295       | 2026   | 2213   | 2646   | 3369   | 3343   | 5180   |  |  |
| 2000  | 1363       | 2133   | 2329   | 2786   | 3547   | 3519   | 5452   |  |  |
| 2300  | -          | -      | 2679   | 3204   | 4079   | 4047   | 6270   |  |  |
| 2600  | -          | -      | 3028   | 3621   | 4611   | 4575   | 7088   |  |  |
| 3000  | -          | -      | 3494   | 4179   | 5320   | 5279   | 8179   |  |  |

| Панио | Высота 500 |        |        |        |        |        |        |  |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--|--|
| Длина | 10 тип     | 11 тип | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |
| 400   | 330        | 520    | 548    | 681    | 875    | 838    | 1244   |  |  |
| 500   | 412        | 649    | 686    | 851    | 1094   | 1047   | 1555   |  |  |
| 600   | 495        | 779    | 823    | 1022   | 1313   | 1257   | 1866   |  |  |
| 700   | 577        | 909    | 960    | 1192   | 1532   | 1466   | 2178   |  |  |
| 800   | 660        | 1039   | 1097   | 1362   | 1751   | 1676   | 2489   |  |  |
| 900   | 742        | 1169   | 1234   | 1532   | 1969   | 1885   | 2800   |  |  |
| 1000  | 825        | 1299   | 1371   | 1703   | 2188   | 2095   | 3111   |  |  |
| 1100  | 907        | 1429   | 1508   | 1873   | 2407   | 2304   | 3422   |  |  |
| 1200  | 990        | 1559   | 1645   | 2043   | 2626   | 2514   | 3733   |  |  |
| 1300  | 1072       | 1689   | 1782   | 2214   | 2845   | 2723   | 4044   |  |  |
| 1400  | 1155       | 1819   | 1920   | 2384   | 3063   | 2933   | 4355   |  |  |
| 1500  | 1237       | 1948   | 2057   | 2554   | 3282   | 3142   | 4666   |  |  |
| 1600  | 1320       | 2078   | 2194   | 2724   | 3501   | 3352   | 4977   |  |  |
| 1700  | 1402       | 2208   | 2331   | 2895   | 3720   | 3561   | 5288   |  |  |
| 1800  | 1485       | 2338   | 2468   | 3065   | 3939   | 3771   | 5599   |  |  |
| 1900  | 1567       | 2468   | 2605   | 3235   | 4157   | 3980   | 5911   |  |  |
| 2000  | 1649       | 2598   | 2742   | 3405   | 4376   | 4190   | 6222   |  |  |
| 2300  | -          | -      | 3154   | 3916   | 5033   | 4818   | 7155   |  |  |
| 2600  | -          | -      | 3565   | 4427   | 5689   | 5447   | 8088   |  |  |
| 3000  | -          | -      | 4113   | 5108   | 6564   | 6285   | 9332   |  |  |

|       |        | Высота 600 |        |        |        |        |        |  |  |  |
|-------|--------|------------|--------|--------|--------|--------|--------|--|--|--|
| Длина | 10 тип | 11 тип     | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |  |
| 400   | 380    | 610        | 636    | 798    | 1008   | 972    | 1460   |  |  |  |
| 500   | 475    | 762        | 795    | 998    | 1260   | 1215   | 1825   |  |  |  |
| 600   | 570    | 915        | 954    | 1198   | 1513   | 1458   | 2190   |  |  |  |
| 700   | 665    | 1067       | 1113   | 1397   | 1765   | 1701   | 2555   |  |  |  |
| 800   | 759    | 1220       | 1272   | 1597   | 2017   | 1944   | 2920   |  |  |  |
| 900   | 854    | 1372       | 1431   | 1796   | 2269   | 2187   | 3285   |  |  |  |
| 1000  | 949    | 1525       | 1590   | 1996   | 2521   | 2430   | 3650   |  |  |  |
| 1100  | 1044   | 1677       | 1749   | 2196   | 2773   | 2673   | 4015   |  |  |  |
| 1200  | 1139   | 1830       | 1908   | 2395   | 3025   | 2916   | 4380   |  |  |  |
| 1300  | 1234   | 1982       | 2067   | 2595   | 3277   | 3159   | 4745   |  |  |  |
| 1400  | 1329   | 2135       | 2226   | 2794   | 3529   | 3402   | 5110   |  |  |  |
| 1500  | 1424   | 2287       | 2385   | 2994   | 3781   | 3645   | 5475   |  |  |  |
| 1600  | 1519   | 2440       | 2543   | 3194   | 4034   | 3888   | 5840   |  |  |  |
| 1700  | 1614   | 2592       | 2702   | 3393   | 4286   | 4131   | 6205   |  |  |  |
| 1800  | 1709   | 2745       | 2861   | 3593   | 4538   | 4374   | 6570   |  |  |  |
| 1900  | 1804   | 2897       | 3020   | 3792   | 4790   | 4617   | 6935   |  |  |  |
| 2000  | 1899   | 3050       | 3179   | 3992   | 5042   | 4860   | 7300   |  |  |  |
| 2300  | -      | -          | 3656   | 4591   | 5798   | 5589   | 8395   |  |  |  |
| 2600  | -      | -          | 4133   | 5190   | 6554   | 6318   | 9489   |  |  |  |
| 3000  | -      | -          | 4769   | 5988   | 7563   | 7290   | 10949  |  |  |  |

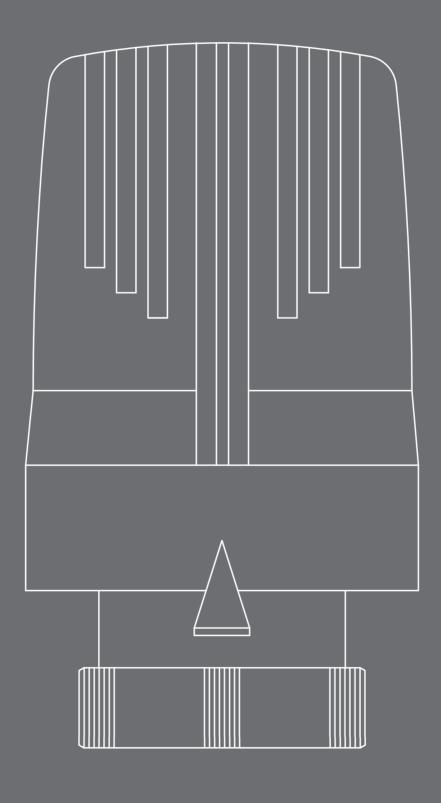
|       | Высота 900 |        |        |        |        |        |        |  |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--|--|
| Длина | 10 тип     | 11 тип | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |
| 400   | 546        | 893    | 1004   | 1116   | 1451   | 1226   | 2080   |  |  |
| 500   | 676        | 1116   | 1256   | 1396   | 1815   | 1534   | 2600   |  |  |
| 600   | 807        | 1340   | 1507   | 1675   | 2177   | 1840   | 3120   |  |  |
| 700   | 938        | 1562   | 1758   | 1954   | 2541   | 2147   | 3640   |  |  |
| 800   | 1070       | 1786   | 2010   | 2233   | 2903   | 2453   | 4161   |  |  |
| 900   | 1201       | 1790   | 2151   | 2512   | 3266   | 2760   | 4680   |  |  |
| 1000  | 1331       | 2009   | 2400   | 2792   | 3629   | 3067   | 5200   |  |  |
| 1100  | 1462       | 2456   | 2763   | 3071   | 3992   | 3373   | 5720   |  |  |
| 1200  | 1595       | 2679   | 3014   | 3350   | 4354   | 3680   | 6240   |  |  |
| 1300  | 1735       | 2912   | 3267   | 3629   | 4718   | 3987   | 6761   |  |  |
| 1400  | 1865       | 3125   | 3517   | 3908   | 5081   | 4294   | 7280   |  |  |
| 1500  | 1994       | 3344   | 3770   | 4188   | 5444   | 4601   | 7800   |  |  |
| 1600  | 2112       | 3572   | 4019   | 4467   | 5807   | 4907   | 8320   |  |  |
| 1700  | 2254       | 3790   | 4270   | 4746   | 6170   | 5214   | 8840   |  |  |
| 1800  | 2583       | 4018   | 4522   | 5025   | 6533   | 5520   | 9360   |  |  |
| 1900  | 2521       | 4242   | 4743   | 5305   | 6896   | 5826   | 9881   |  |  |
| 2000  | 2645       | 4465   | 5024   | 5583   | 7258   | 6130   | 10401  |  |  |
| 2300  | -          | -      | 5778   | 6421   | 8348   | 7054   | 11961  |  |  |
| 2600  | -          | -      | 6532   | 7259   | 9436   | 7974   | 13520  |  |  |
| 3000  | -          | -      | 7536   | 8375   | 10887  | 9201   | 15600  |  |  |

К (боковое подключение) и KV (нижнее подключение) с температурным режимом 90—70—20 °C. В данной таблице указан тепловой поток (Вт) радиаторов РОСТерм К и KV по EN 442-2015.

| Панио |        | Высота 200 |        |        |        |        |        |  |  |  |  |
|-------|--------|------------|--------|--------|--------|--------|--------|--|--|--|--|
| Длина | 10 тип | 11 тип     | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |  |  |
| 400   | 129    | 199        | 269    | 319    | 437    | 426    | 581    |  |  |  |  |
| 500   | 161    | 249        | 336    | 399    | 531    | 532    | 726    |  |  |  |  |
| 600   | 193    | 299        | 404    | 479    | 624    | 639    | 871    |  |  |  |  |
| 700   | 225    | 349        | 471    | 559    | 719    | 745    | 1017   |  |  |  |  |
| 800   | 257    | 399        | 538    | 639    | 813    | 852    | 1162   |  |  |  |  |
| 900   | 290    | 449        | 605    | 718    | 908    | 958    | 1307   |  |  |  |  |
| 1000  | 322    | 498        | 673    | 798    | 1002   | 1064   | 1453   |  |  |  |  |
| 1100  | 354    | 548        | 740    | 878    | 1098   | 1171   | 1598   |  |  |  |  |
| 1200  | 386    | 598        | 807    | 958    | 1192   | 1277   | 1743   |  |  |  |  |
| 1300  | 419    | 648        | 874    | 1038   | 1286   | 1383   | 1889   |  |  |  |  |
| 1400  | 451    | 698        | 942    | 1118   | 1382   | 1490   | 2034   |  |  |  |  |
| 1500  | 483    | 748        | 1009   | 1197   | 1476   | 1596   | 2179   |  |  |  |  |
| 1600  | 515    | 798        | 1076   | 1277   | 1571   | 1703   | 2324   |  |  |  |  |
| 1700  | 547    | 847        | 1143   | 1357   | 1665   | 1809   | 2470   |  |  |  |  |
| 1800  | 579    | 897        | 1211   | 1437   | 1760   | 1916   | 2615   |  |  |  |  |
| 1900  | 611    | 947        | 1278   | 1517   | 1857   | 2022   | 2760   |  |  |  |  |
| 2000  | 644    | 997        | 1345   | 1597   | 1954   | 2129   | 2905   |  |  |  |  |
| 2300  | 740    | 1147       | 1547   | 1836   | 2248   | 2448   | 3341   |  |  |  |  |
| 2600  | 837    | 1296       | 1749   | 2076   | 2539   | 2676   | 3777   |  |  |  |  |
| 3000  | 966    | 1495       | 2018   | 2395   | 2929   | 3193   | 4358   |  |  |  |  |

| Панио |        |        |        | Высота 300 |        |        |        |
|-------|--------|--------|--------|------------|--------|--------|--------|
| Длина | 10 тип | 11 тип | 20 тип | 21 тип     | 22 тип | 30 тип | 33 тип |
| 400   | 195    | 318    | 325    | 384        | 518    | 518    | 727    |
| 500   | 242    | 360    | 406    | 480        | 636    | 639    | 909    |
| 600   | 286    | 439    | 488    | 576        | 765    | 772    | 1091   |
| 700   | 332    | 504    | 569    | 672        | 879    | 895    | 1273   |
| 800   | 377    | 553    | 650    | 768        | 1006   | 1015   | 1455   |
| 900   | 420    | 619    | 732    | 864        | 1176   | 1141   | 1637   |
| 1000  | 464    | 696    | 813    | 960        | 1298   | 1273   | 1819   |
| 1100  | 513    | 764    | 894    | 1056       | 1380   | 1405   | 2000   |
| 1200  | 549    | 824    | 975    | 1152       | 1542   | 1498   | 2182   |
| 1300  | 598    | 892    | 1037   | 1248       | 1689   | 1610   | 2364   |
| 1400  | 648    | 960    | 1098   | 1345       | 1835   | 1723   | 2546   |
| 1500  | 690    | 1032   | 1200   | 1441       | 1945   | 1870   | 2728   |
| 1600  | 731    | 1104   | 1301   | 1537       | 2056   | 2017   | 2910   |
| 1700  | 776    | 1160   | 1380   | 1633       | 2195   | 2141   | 3092   |
| 1800  | 822    | 1216   | 1460   | 1729       | 2333   | 2264   | 3274   |
| 1900  | 866    | 1289   | 1540   | 1825       | 2437   | 2393   | 3455   |
| 2000  | 911    | 1362   | 1620   | 1921       | 2540   | 2522   | 3637   |
| 2300  | -      | -      | 1864   | 2209       | 2978   | 2897   | 4183   |
| 2600  | -      | -      | 2109   | 2497       | 3385   | 3280   | 4728   |
| 3000  | -      | =      | 2434   | 2881       | 3890   | 3819   | 5456   |

| Паша  | Высота 400 |        |        |        |        |        |        |  |  |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--|--|--|
| Длина | 10 тип     | 11 тип | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |  |
| 400   | 252        | 384    | 405    | 486    | 662    | 646    | 927    |  |  |  |
| 500   | 309        | 481    | 506    | 607    | 820    | 800    | 1159   |  |  |  |
| 600   | 355        | 560    | 607    | 729    | 982    | 947    | 1390   |  |  |  |
| 700   | 424        | 658    | 708    | 850    | 1157   | 1116   | 1622   |  |  |  |
| 800   | 480        | 764    | 809    | 971    | 1315   | 1271   | 1854   |  |  |  |
| 900   | 540        | 859    | 911    | 1093   | 1478   | 1432   | 2086   |  |  |  |
| 1000  | 599        | 911    | 1012   | 1214   | 1669   | 1592   | 2318   |  |  |  |
| 1100  | 655        | 1041   | 1114   | 1336   | 1795   | 1748   | 2549   |  |  |  |
| 1200  | 714        | 1145   | 1214   | 1457   | 1944   | 1906   | 2781   |  |  |  |
| 1300  | 774        | 1226   | 1315   | 1578   | 2136   | 2066   | 3013   |  |  |  |
| 1400  | 834        | 1307   | 1417   | 1700   | 2329   | 2227   | 3245   |  |  |  |
| 1500  | 891        | 1386   | 1518   | 1821   | 2459   | 2383   | 3476   |  |  |  |
| 1600  | 948        | 1466   | 1619   | 1943   | 2589   | 2540   | 3708   |  |  |  |
| 1700  | 1005       | 1556   | 1720   | 2064   | 2793   | 2697   | 3940   |  |  |  |
| 1800  | 1062       | 1646   | 1821   | 2186   | 2996   | 2855   | 4172   |  |  |  |


| 1900 | 1121 | 1727 | 1923 | 2316 | 3167 | 3014 | 4404 |
|------|------|------|------|------|------|------|------|
| 2000 | 1180 | 1808 | 2024 | 2447 | 3337 | 3173 | 4635 |
| 2300 | -    | -    | 2328 | 2793 | 3707 | 3644 | 5331 |
| 2600 | -    | -    | 2631 | 3157 | 4318 | 4116 | 6026 |
| 3000 | -    | -    | 3036 | 3643 | 4979 | 4752 | 6953 |

|       |        |        |        | Высота 500 |        |        |        |
|-------|--------|--------|--------|------------|--------|--------|--------|
| Длина | 10 тип | 11 тип | 20 тип | 21 тип     | 22 тип | 30 тип | 33 тип |
| 400   | 298    | 468    | 475    | 616        | 780    | 762    | 1114   |
| 500   | 367    | 586    | 585    | 770        | 975    | 941    | 1393   |
| 600   | 435    | 697    | 701    | 933        | 1170   | 1125   | 1671   |
| 700   | 509    | 815    | 816    | 1111       | 1365   | 1313   | 1950   |
| 800   | 576    | 934    | 943    | 1251       | 1560   | 1506   | 2228   |
| 900   | 646    | 1052   | 1070   | 1420       | 1755   | 1703   | 2507   |
| 1000  | 718    | 1163   | 1182   | 1585       | 1950   | 1886   | 2785   |
| 1100  | 784    | 1281   | 1337   | 1695       | 2145   | 2106   | 3064   |
| 1200  | 859    | 1399   | 1420   | 1870       | 2340   | 2265   | 3342   |
| 1300  | 930    | 1518   | 1540   | 2036       | 2535   | 2454   | 3621   |
| 1400  | 1000   | 1637   | 1660   | 2203       | 2730   | 2644   | 3899   |
| 1500  | 1068   | 1750   | 1787   | 2369       | 2925   | 2838   | 4178   |
| 1600  | 1135   | 1864   | 1913   | 2535       | 3120   | 3032   | 4456   |
| 1700  | 1205   | 1979   | 2025   | 2675       | 3315   | 3212   | 4735   |
| 1800  | 1274   | 2095   | 2136   | 2816       | 3510   | 3393   | 5014   |
| 1900  | 1344   | 2211   | 2259   | 2991       | 3705   | 3584   | 5292   |
| 2000  | 1413   | 2328   | 2381   | 3167       | 3899   | 3776   | 5571   |
| 2300  | -      | -      | 2746   | 3656       | 4485   | 4348   | 6406   |
| 2600  | -      | -      | 3103   | 4112       | 5084   | 4917   | 7242   |
| 3000  | -      | -      | 3581   | 4653       | 5928   | 5668   | 8356   |

| Панио |        | Высота 600 |        |        |        |        |        |  |  |  |
|-------|--------|------------|--------|--------|--------|--------|--------|--|--|--|
| Длина | 10 тип | 11 тип     | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |  |
| 400   | 341    | 549        | 551    | 701    | 909    | 879    | 1300   |  |  |  |
| 500   | 427    | 687        | 692    | 877    | 1134   | 1095   | 1625   |  |  |  |
| 600   | 508    | 818        | 820    | 1053   | 1359   | 1308   | 1949   |  |  |  |
| 700   | 583    | 956        | 786    | 1227   | 1584   | 1516   | 2275   |  |  |  |
| 800   | 663    | 1098       | 1103   | 1403   | 1809   | 1732   | 2599   |  |  |  |
| 900   | 755    | 1242       | 1259   | 1578   | 2034   | 1977   | 2924   |  |  |  |
| 1000  | 834    | 1381       | 1393   | 1754   | 2259   | 2188   | 3249   |  |  |  |
| 1100  | 917    | 1485       | 1492   | 1929   | 2484   | 2367   | 3574   |  |  |  |
| 1200  | 992    | 1655       | 1666   | 2104   | 2709   | 2401   | 3891   |  |  |  |
| 1300  | 1076   | 1789       | 1800   | 2279   | 2933   | 2722   | 4220   |  |  |  |
| 1400  | 1159   | 1923       | 1935   | 2455   | 3158   | 3042   | 4549   |  |  |  |
| 1500  | 1240   | 2060       | 2079   | 2630   | 3383   | 3265   | 4874   |  |  |  |
| 1600  | 1320   | 2197       | 2224   | 2806   | 3608   | 3486   | 5199   |  |  |  |
| 1700  | 1402   | 2330       | 2354   | 2981   | 3833   | 3696   | 5524   |  |  |  |
| 1800  | 1484   | 2463       | 2485   | 3157   | 4058   | 3905   | 5849   |  |  |  |
| 1900  | 1563   | 2609       | 2630   | 3332   | 4283   | 4127   | 6174   |  |  |  |
| 2000  | 1643   | 2755       | 2776   | 3507   | 4508   | 4348   | 6499   |  |  |  |
| 2300  | -      | -          | 3197   | 4034   | 5183   | 5009   | 7474   |  |  |  |
| 2600  | -      | -          | 3603   | 4560   | 5858   | 5646   | 8448   |  |  |  |
| 3000  | -      | -          | 4160   | 5261   | 6757   | 6522   | 9748   |  |  |  |

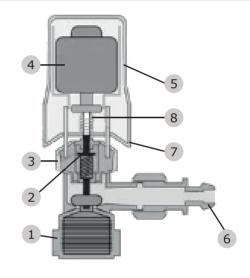
|       |        | Высота 900 |        |        |        |        |        |  |  |  |
|-------|--------|------------|--------|--------|--------|--------|--------|--|--|--|
| Длина | 10 тип | 11 тип     | 20 тип | 21 тип | 22 тип | 30 тип | 33 тип |  |  |  |
| 400   | 478    | 780        | 878    | 973    | 1266   | 1069   | 1814   |  |  |  |
| 500   | 592    | 976        | 1099   | 1217   | 1583   | 1338   | 2268   |  |  |  |
| 600   | 707    | 1181       | 1318   | 1460   | 1899   | 1605   | 2721   |  |  |  |
| 700   | 822    | 1366       | 1538   | 1704   | 2216   | 1873   | 3175   |  |  |  |
| 800   | 937    | 1558       | 1758   | 1947   | 2532   | 2140   | 3629   |  |  |  |
| 900   | 1052   | 1566       | 1882   | 2190   | 2849   | 2408   | 4082   |  |  |  |
| 1000  | 1166   | 1758       | 2100   | 2434   | 3166   | 2675   | 4536   |  |  |  |
| 1100  | 1280   | 2142       | 2425   | 2677   | 3482   | 2942   | 4989   |  |  |  |
| 1200  | 1397   | 2341       | 2638   | 2920   | 3798   | 3210   | 5443   |  |  |  |
| 1300  | 1515   | 2548       | 2858   | 3163   | 4115   | 3478   | 5897   |  |  |  |
| 1400  | 1633   | 2732       | 3077   | 3407   | 4431   | 3746   | 6350   |  |  |  |
| 1500  | 1741   | 2927       | 3297   | 3650   | 4748   | 4013   | 6804   |  |  |  |
| 1600  | 1849   | 3128       | 3515   | 3894   | 5065   | 4280   | 7258   |  |  |  |
| 1700  | 1968   | 3317       | 3735   | 4137   | 5381   | 4548   | 7711   |  |  |  |
| 1800  | 2087   | 3515       | 3955   | 4381   | 5698   | 4815   | 8165   |  |  |  |
| 1900  | 2202   | 3712       | 4175   | 4624   | 6014   | 5081   | 8619   |  |  |  |
| 2000  | 2316   | 3908       | 4394   | 4867   | 6330   | 5347   | 9073   |  |  |  |
| 2300  | -      | -          | 5053   | 5598   | 7281   | 6153   | 10434  |  |  |  |
| 2600  | -      | -          | 5713   | 6328   | 8230   | 6956   | 11794  |  |  |  |
| 3000  | -      | -          | 6591   | 7301   | 9496   | 8026   | 13608  |  |  |  |

## ТЕРМОСТАТИЧЕСКИЕ ГОЛОВКИ

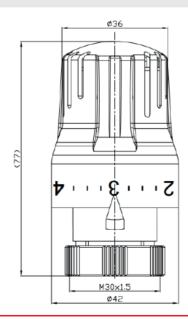


## 1. ТЕРМОСТАТИЧЕСКИЕ ГОЛОВКИ РОСТЕРМ

## 1.1. Общая информация


Термостатическая головка TW-2 с жидкостным элементом класса энергоэффективности В подходит для установки на все термостатические клапаны на подающих трубопроводах, коллекторных группах и отопительных приборах.

## 1.2. Характеристики термоголовок


| N° | Характеристика                                          | Единица измерения | Значение   |
|----|---------------------------------------------------------|-------------------|------------|
| 1  | Рабочее давление термоносителя                          | бар               | 10         |
| 2  | Максимальная температура теплоносителя при эксплуатации | °C                | 120        |
| 3  | Тип элемента                                            | -                 | жидкостный |
| 4  | Резьба                                                  | -                 | M 30 x 1,5 |
| 5  | Время реакции                                           | мин.              | 22         |

## 1.3. Конструкция и материалы

| N° | Назначение                                      |  |  |  |  |  |
|----|-------------------------------------------------|--|--|--|--|--|
| 1  | Термостатический клапан                         |  |  |  |  |  |
| 2  | Золотник (шток) термостатического клапана       |  |  |  |  |  |
| 3  | Гайка для фиксации термоголовки                 |  |  |  |  |  |
| 4  | Сильфон (датчик), наполненный рабочим веществом |  |  |  |  |  |
| 5  | Подвижный корпус термоголовки                   |  |  |  |  |  |
| 6  | Патрубок присоединения к отопительному прибору  |  |  |  |  |  |
| 7  | Регулировочная шкала                            |  |  |  |  |  |
| 8  | Настроечная пружина                             |  |  |  |  |  |



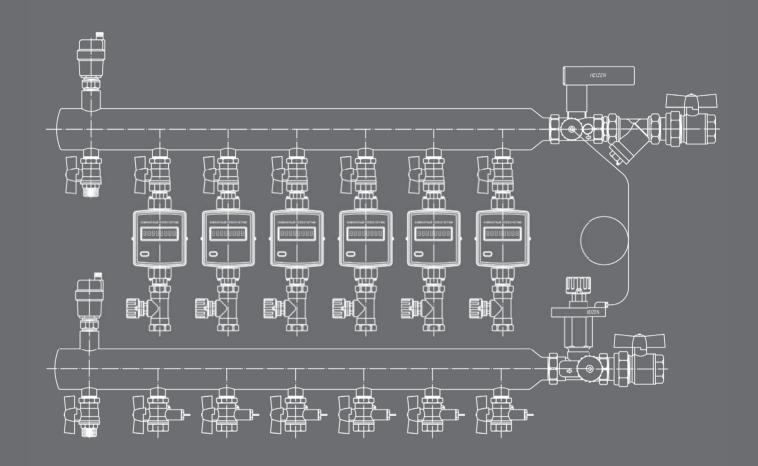
## 1.4. Габаритные размеры



## 1.5. Настройка термостатической головки

Термостатическая головка перекрывает полностью термостатический клапан при превышении установленной температуры на 2 °C. Все указанные значения температур °C являются приблизительными. Термостатические элементы совместимы со всеми термостатическими клапанами других производителей с посадочной резьбой M30 x 1.5.

| *    | 1   | 2   | 3   | 4   | 5   |
|------|-----|-----|-----|-----|-----|
| 6.5° | 12° | 16° | 20° | 24° | 28° |


## 1.6. Указания по монтажу

- При монтаже термоголовки не допускается использование рычажных ключей.
- Термостатическая головка должна находиться в зоне наименьшего воздействия тепловых потоков от нагревательных приборов и трубопроводов.
- Перед установкой термостатической головки ее следует настроить в положение наибольшего открытия.
- Во избежание неправильного определения температуры и постороннего теплового воздействия термостатические элементы не следует располагать вертикально над клапаном в нише с отопительным прибором или закрывать плотной тканью; для исключения такого влияния рекомендуется устанавливать термостатические элементы с выносным датчиком.

## 1.7. Указания по эксплуатации и техническому обслуживанию

- Терморегулятор должен эксплуатироваться при давлении и температуре, изложенных в таблице технических характеристик.
- Разборка клапана допускается только при слитом теплоносителе.
- Не допускается закрытие терморегулятора шторами, экранами и т. п.

## КОЛЛЕКТОРНЫЕ УЗЛЫ



## 1. КОЛЛЕКТОРНЫЕ УЗЛЫ

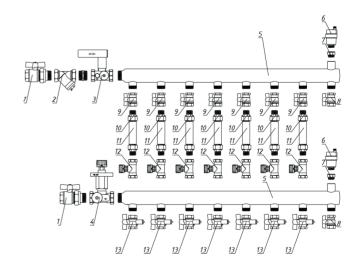
## 1.1. Коллекторные узлы для систем отопления

Коллекторные узлы РОСТерм для системы отопления применяются для распределения потока теплоносителя и организации учета расхода тепловой энергии. Изделия устанавливаются в многоэтажных и индивидуальных жилых домах, административных, общественных и производственных зданиях и сооружениях.

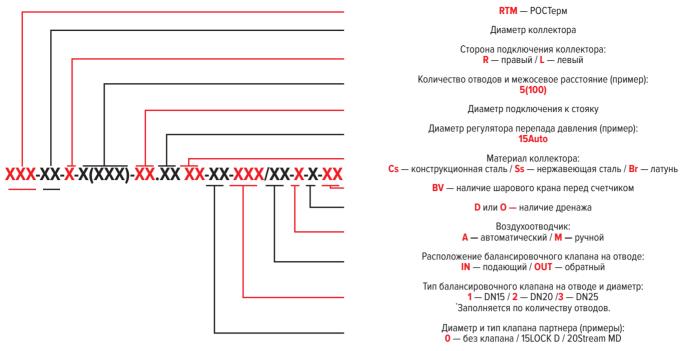
#### Технические характеристики

| Номинальное рабочее давление PN, МПа        | 1,0                                                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------------|
| Материал основных деталей                   | Латунь марок: ЛС-59, ЛЦ-40С, CW602N, CW617N;<br>сталь конструкционная и нержавеющая |
| Материалы уплотнения неразъемных соединений | Клеи-герметики анаэробные, лен сантехнический, паста уплотнительная Unipak          |

## 1.2. Коллекторные узлы для систем отопления жилых помещений


Коллекторные узлы применяются для подключения горизонтальных систем отопления. В состав коллекторных узлов входит арматура для присоединения к стоякам и потребителям, арматура для фильтрации теплоносителя, ручная и автоматическая балансировочная арматура, распределительные коллекторы, проставки для теплосчетчиков (возможна поставка в комплекте с теплосчетчиком) и арматура для выполнения сервисных функций, таких как воздухоотвод, дренаж и измерительные функции.

#### Характеристики коллекторных узлов


| Наименование показателя                        | Ед.изм. | Значение         |
|------------------------------------------------|---------|------------------|
| Диаметр присоединения к стояку                 | мм      | 15–50            |
| Диаметр коллектора                             | мм      | 15–65            |
| Количество выходов                             | шт      | 1–15             |
| Диаметр присоединения потребителей             | мм      | 15–25            |
| Межосевое расстояние между отводами коллектора | ММ      | 50, 90, 100, 110 |

#### Принципиальная схема типового коллекторного узла

| N° | Наименование                                                                                       |
|----|----------------------------------------------------------------------------------------------------|
| 1  | Кран шаровый со сгоном «бабочка»                                                                   |
| 2  | Фильтр косой                                                                                       |
| 3  | Ручной балансировочный клапан с измерительными ниппелями,<br>дренаж Heizen Stream MD               |
| 4  | Автоматический клапан-регулятор перепада давления<br>без измерительного ниппеля дренаж Heizen Auto |
| 5  | Коллектор                                                                                          |
| 6  | Автоматический воздухоотводчик                                                                     |
| 7  | Отсечной клапан                                                                                    |
| 8  | Кран шаровой ручка-бабочка для дренажа                                                             |
| 9  | Кран шаровой ручка-бабочка                                                                         |
| 10 | Комплект накидных гаек                                                                             |
| 11 | Проставка вместо тепло-водосчетчика                                                                |
| 12 | Ручной балансировочный клапан Heizen STB                                                           |
| 13 | Кран шаровой «бабочка» для подключения термодатчика                                                |



## Наименование (наименования нетиповых коллекторных узлов могут содержать дополнительное обозначение). Коллекторный узел РОСТерм для систем отопления:

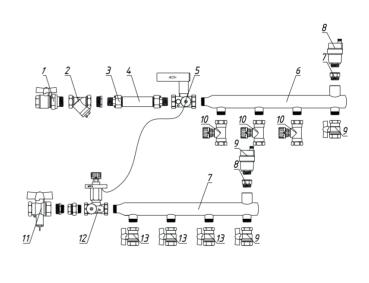


Пример: коллекторный узел РОСТерм для систем отопления RTM-40-L-2(100)-25.20Auto CS-20Stream MD-STB11/IN-A-D-BV.

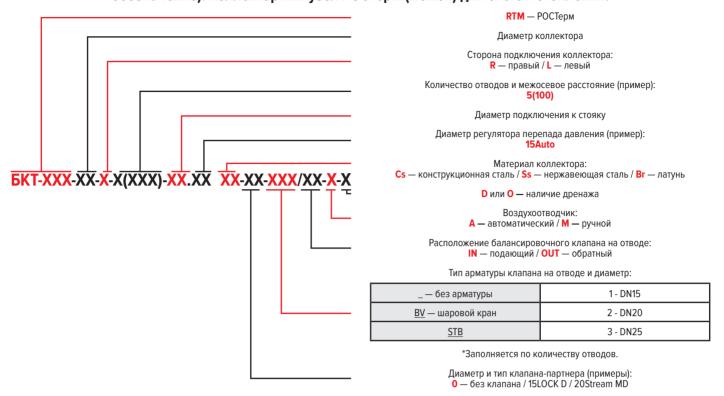
| Артикул                                                          | DN<br>кол-ра | Подкл. | Кол-во<br>отводов | DN подключения<br>к стояку | DN Heizen Auto | Мат. кол-ра | Диаметр и тип<br>клапана- партнера |
|------------------------------------------------------------------|--------------|--------|-------------------|----------------------------|----------------|-------------|------------------------------------|
| RTM-40-L-2(100)-25.20Auto<br>CS-20Stream MD-STB11/IN-A-D-BV      | 40           | Левое  | 2                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-3(100)-25.20Auto<br>CS-20Stream MD-STB111/IN-A-D-BV     | 40           | Левое  | 3                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-4(100)-25.20Auto<br>CS-20Stream MD-STB1111/IN-A-D-BV    | 40           | Левое  | 4                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-5(100)-25.20Auto<br>CS-20Stream MD-STB11111/IN-A-D-BV   | 40           | Левое  | 5                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-6(100)-25.20Auto<br>CS-20Stream MD-STB11111/IN-A-D-BV   | 40           | Левое  | 6                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-7(100)-25.20Auto<br>CS-20Stream MD-STB111111/IN-A-D-BV  | 40           | Левое  | 7                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-L-8(100)-25.20Auto<br>CS-20Stream MD-STB1111111/IN-A-D-BV | 40           | Левое  | 8                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-2(100)-25.20Auto<br>CS-20Stream MD-STB11/IN-A-D-BV      | 40           | Правое | 2                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-3(100)-25.20Auto<br>CS-20Stream MD-STB111/IN-A-D-BV     | 40           | Правое | 3                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-4(100)-25.20Auto<br>CS-20Stream MD-STB1111/IN-A-D-BV    | 40           | Правое | 4                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-5(100)-25.20Auto<br>CS-20Stream MD-STB1111/IN-A-D-BV    | 40           | Правое | 5                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-6(100)-25.20Auto<br>CS-20Stream MD-STB111111/IN-A-D-BV  | 40           | Правое | 6                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-7(100)-25.20Auto<br>CS-20Stream MD-STB111111/IN-A-D-BV  | 40           | Правое | 7                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-40-R-8(100)-25.20Auto<br>CS-20Stream MD-STB1111111/IN-A-D-BV | 40           | Правое | 8                 | 25                         | 20             | Cs          | 20Stream MD                        |
| RTM-50-L-2(100)-32.25Auto<br>CS-25Stream MD-STB11/IN-A-D-BV      | 50           | Левое  | 2                 | 32                         | 25             | Cs          | 25Stream MD                        |
| RTM-50-L-3(100)-32.25Auto<br>CS-25Stream MD-STB111/IN-A-D-BV     | 50           | Левое  | 3                 | 32                         | 25             | Cs          | 25Stream MD                        |
| RTM-50-L-4(100)-32.25Auto<br>CS-25Stream MD-STB1111/IN-A-D-BV    | 50           | Левое  | 4                 | 32                         | 25             | Cs          | 25Stream MD                        |
| RTM-50-L-5(100)-32.25Auto<br>CS-25Stream MD-STB1111/IN-A-D-BV    | 50           | Левое  | 5                 | 32                         | 25             | Cs          | 25Stream MD                        |
| RTM-50-L-6(100)-32.25Auto<br>CS-25Stream MD-STB11111/IN-A-D-BV   | 50           | Левое  | 6                 | 32                         | 25             | Cs          | 25Stream MD                        |
| RTM-50-L-7(100)-32.25Auto<br>CS-25Stream MD-STB111111/IN-A-D-BV  | 50           | Левое  | 7                 | 32                         | 25             | Cs          | 25Stream MD                        |

| Артикул                                                          | DN<br>кол-ра | Подкл. | Кол-во<br>отводов | DN подключения к стояку | DN Heizen Auto | Мат. кол-ра | Диаметр и тип<br>клапана- партнера |
|------------------------------------------------------------------|--------------|--------|-------------------|-------------------------|----------------|-------------|------------------------------------|
| RTM-50-L-8(100)-32.25Auto                                        | 50           | Левое  | 8                 | 32                      | 25             | Cs          | 25Stream MD                        |
| CS-25Stream MD-STB11111111/IN-A-D-BV                             | 50           | Левое  | ٥                 | 32                      | 25             | CS          | Zoottedili MiD                     |
| RTM-50-R-2(100)-32.25Auto                                        | F0           |        |                   | 22                      | 25             |             | 250                                |
| CS-25Stream MD-STB11/IN-A-D-BV                                   | 50           | Правое | 2                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-3(100)-32.25Auto<br>CS-25Stream MD-STB111/IN-A-D-BV     | 50           | Правое | 3                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-4(100)-32.25Auto<br>CS-25Stream MD-STB1111/IN-A-D-BV    | 50           | Правое | 4                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-5(100)-32.25Auto<br>CS-25Stream MD-STB1111/IN-A-D-BV    | 50           | Правое | 5                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-6(100)-32.25Auto<br>CS-25Stream MD-STB11111/IN-A-D-BV   | 50           | Правое | 6                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-7(100)-32.25Auto<br>CS-25Stream MD-STB111111/IN-A-D-BV  | 50           | Правое | 7                 | 32                      | 25             | Cs          | 25Stream MD                        |
| RTM-50-R-8(100)-32.25Auto<br>CS-25Stream MD-STB1111111/IN-A-D-BV | 50           | Правое | 8                 | 32                      | 25             | Cs          | 25Stream MD                        |

## 1.3. Коллекторные узлы для систем отопления помещений БКТ


Коллекторные узлы для системы отопления предназначены для подключения горизонтальной системы отопления и организации учета потребляемой тепловой энергии помещений аренды.

### Характеристики коллекторных узлов


| Наименование показателя                        | Ед. изм. | Значение |
|------------------------------------------------|----------|----------|
| Диаметр присоединения к стояку                 | мм       | 15–50    |
| Диаметр коллектора                             | мм       | 15–65    |
| Межосевое расстояние между отводами коллектора | мм       | 50, 100  |
| Количество выходов                             | мм       | 1–12     |
| Диаметр присоединения потребителей             | ММ       | 15–25    |

#### Принципиальная схема типового коллекторного узла

| N° | Наименование                                                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------|
| 1  | Кран шаровой со сгоном «бабочка»                                                                                  |
| 2  | Фильтр косой                                                                                                      |
| 3  | Комплект накидных гаек                                                                                            |
| 4  | Проставка вместо тепло-водосчетчика                                                                               |
| 5  | Ручной балансировочный клапан с измерительными ниппелями,<br>дренаж Heizen Stream MD                              |
| 6  | Коллектор                                                                                                         |
| 7  | Отсечной клапан                                                                                                   |
| 8  | Автоматический воздухоотводчик                                                                                    |
| 9  | Кран шаровой ручка-бабочка для дренажа                                                                            |
| 10 | Ручной балансировочный клапан Heizen STB                                                                          |
| 11 | Кран шаровой «бабочка» для подключения термодатчика                                                               |
| 12 | Автоматический клапан-регулятор перепада давления<br>без измерительного ниппеля дренаж Heizen Auto 15 мм, 5-5 кПа |
| 13 | Кран шаровой ручка-бабочка                                                                                        |



## Haumeнoвaние (наименования нетиповых коллекторных узлов могут содержать дополнительное обозначение). Коллекторный узел РОСТерм (Heizen) для систем отопления:



<sup>\*</sup>Пример: коллекторный узел РОСТерм для систем отопления БКТ RTM-25-L-2(50)-25.20Auto CS-20Stream MD-STB11/IN-A-D.

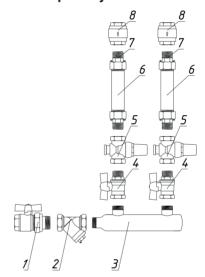
| Артикул                                                     | DN<br>кол-ра | Подкл. | Кол-во<br>отводов | DN<br>подключения<br>к стояку | DN Heizen Auto | Мат. кол-ра | Диаметр и тип клапана-<br>партнера |
|-------------------------------------------------------------|--------------|--------|-------------------|-------------------------------|----------------|-------------|------------------------------------|
| БКТ RTM-25-L-2(50)-20.15Auto<br>CS-20Stream MD-STB11/IN-A-D | 25           | Левое  | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |
| БКТ RTM-25-L-2(50)-20.15Auto<br>CS-20Stream MD-BV11/IN-A-D  | 25           | Левое  | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |
| БКТ RTM-25-L-2(50)-20.15Auto<br>CS-20Stream MD-11/IN-A-D    | 25           | Левое  | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |
| БКТ RTM-25-R-2(50)-20.15Auto<br>CS-20Stream MD-STB11/IN-A-D | 25           | Правое | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |
| БКТ RTM-25-R-2(50)-20.15Auto<br>CS-20Stream MD-BV11/IN-A-D  | 25           | Правое | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |
| БКТ RTM-25-R-2(50)-20.15Auto<br>CS-20Stream MD-11/IN-A-D    | 25           | Правое | 2                 | 20                            | 15             | Cs          | 15Stream MD                        |

## 1.4. Коллекторные узлы и водомерные вставки для системы водоснабжения

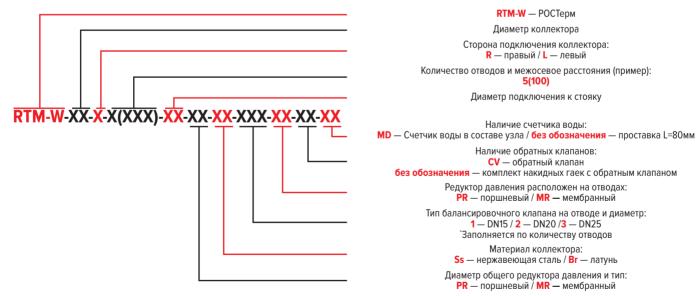
Коллекторные узлы предназначены для распределения потока холодной и горячей воды и организации учета расхода воды. Изделия устанавливаются в многоэтажных и индивидуальных жилых домах, административных, общественных и производственных зданиях и сооружениях. Изделия могут быть использованы как при создании систем горячего и холодного водоснабжения в строящихся зданиях, так и для модернизации систем в уже существующих и эксплуатируемых зданиях.

| Наименование показателя                                   | Значение                                                                   |
|-----------------------------------------------------------|----------------------------------------------------------------------------|
| Номинальное рабочее давление PN                           | 1,0 МПа                                                                    |
| Максимальная температура воды $T_{\scriptscriptstylemax}$ | + 80 °C                                                                    |
| Материал основных деталей                                 | Латунь марок: ЛС-59, ЛЦ-40C, CW602N, CW617N; сталь нержавеющая             |
| Материалы уплотнения неразъемных соединений               | Клеи-герметики анаэробные, лен сантехнический, паста уплотнительная Unipak |

#### Коллекторные узлы для системы водоснабжения


Коллекторные узлы для системы водоснабжения предназначены для подключения горизонтальной системы ХВС и ГВС и организации учета потребляемой воды квартирами. В состав коллекторных узлов входит арматура для присоединения к стоякам и потребителям, арматура для фильтрации, редукторы давления, распределительные коллекторы, проставки для водосчетчиков (возможна поставка в комплекте с водосчетчиком).

#### Характеристики коллекторных узлов


| Наименование показателя                        | Ед. изм. | Значение         |
|------------------------------------------------|----------|------------------|
| Диаметр присоединения к стояку                 | мм       | 15–50            |
| Диаметр коллектора                             | мм       | 40/50/65         |
| Межосевое расстояние между отводами коллектора | мм       | 50, 90, 100, 110 |
| Количество выходов                             | мм       | 1–15             |
| Диаметр присоединения потребителей             | мм       | 15–25            |

#### Принципиальная схема типового коллекторного узла

| Nº | Наименование                     |
|----|----------------------------------|
| 1  | Кран шаровой со сгоном «бабочка» |
| 2  | Фильтр косой                     |
| 3  | Коллектор                        |
| 4  | Кран шаровой ручка-бабочка       |
| 5  | Редуктор давления Heizen         |
| 6  | Подставка для водосчетчика       |
| 7  | Комплект накидных гаек           |
| 8  | Обратный клапан                  |



## Наименование (наименования нетиповых коллекторных узлов могут содержать дополнительное обозначение). Коллекторный узел РОСТерм (Heizen) для систем отопления:



<sup>\*</sup>Пример: коллекторный узел РОСТерм для систем отопления RTM-W-40-L-2(100)-32-32RS-SS-11.

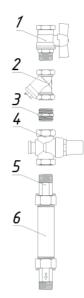
| Артикул                                | DN кол-ра | Подкл. | Кол-во<br>отводов | DN подключения к стояку | DN общего РД<br>и тип | Мат.<br>кол-ра | DN<br>отводов | DN РД и тип<br>на отводах |
|----------------------------------------|-----------|--------|-------------------|-------------------------|-----------------------|----------------|---------------|---------------------------|
| RTM-W-40-L-2(100)-32-32PR-SS-11        | 40        | Левое  | 2                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-111       | 40        | Левое  | 3                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-1111      | 40        | Левое  | 4                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-11111     | 40        | Левое  | 5                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-111111    | 40        | Левое  | 6                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-1111111   | 40        | Левое  | 7                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-3(100)-32-32PR-SS-111111111 | 40        | Левое  | 8                 | 32                      | 32 порш.              | Ss             | 15            | -                         |
| RTM-W-40-L-2(100)-32-SS-11MR           | 40        | Левое  | 2                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-3(100)-32-SS-111MR          | 40        | Левое  | 3                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-4(100)-32-SS-1111MR         | 40        | Левое  | 4                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-5(100)-32-SS-11111MR        | 40        | Левое  | 5                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-6(100)-32-SS-111111MR       | 40        | Левое  | 6                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-7(100)-32-SS-1111111MR      | 40        | Левое  | 7                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |
| RTM-W-40-L-8(100)-32-SS-11111111MR     | 40        | Левое  | 8                 | 32                      | -                     | Ss             | 15            | 15 мембр.                 |

#### Водомерные вставки

Водомерные узлы РОСТерм устанавливаются на трубопроводах для подключения квартир к системам холодного и горячего водоснабжения. Водомерные узлы РОСТерм применяются для:

- регулировки давления холодной и горячей воды;
- учета потребления холодной и горячей воды (возможна поставка без счетчиков с установкой проставки);
- организации циркуляции горячего водоснабжения;
- защиты от гидроударов в системах холодного и горячего водоснабжения;
- фильтрации теплоносителя и воды.

#### Основные технические характеристики водомерных узлов РОСТерм:


| Наименование показателя                             | Значение                                                                   |
|-----------------------------------------------------|----------------------------------------------------------------------------|
| Номинальное рабочее давление PN, МПа                | 1,0                                                                        |
| Ду подключения                                      | 15, 20                                                                     |
| Максимальная температура воды Т <sub>тах</sub> , °С | +80                                                                        |
| Материал основных деталей                           | Латунь марок: ЛС-59, ЛЦ-40С, CW602N, CW617N; сталь нержавеющая             |
| Материалы уплотнения неразъемных соединений         | Клеи-герметики анаэробные, лен сантехнический, паста уплотнительная Unipak |

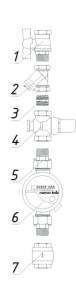
#### Номенклатура типовых водомерных узлов РОСТерм:

- Водомерный узел РОСТерм Ду15 с отводом под УВП
- Водомерный узел РОСТерм Ду15 с отводом под УВП и счетчиком в комплекте
- Водомерный узел РОСТерм Ду15
- Водомерный узел РОСТерм Ду15 со счетчиком в комплекте
- Водомерный узел РОСТерм Ду15 с отводом под УВП без редуктора давления
- Водомерный узел РОСТерм Ду15 с отводом под УВП и счетчиком в комплекте без редуктора давления
- Водомерный узел РОСТерм Ду15 без редуктора давления
- Водомерный узел РОСТерм Ду15 со счетчиком в комплекте без редуктора давления
- Водомерный узел РОСТерм Ду20 с отводом под УВП
- Водомерный узел РОСТерм Ду2О с отводом под УВП и счетчиком в комплекте
- Водомерный узел РОСТерм Ду20
- Водомерный узел РОСТерм Ду2О со счетчиком в комплекте

## Водомерный узел РОСТерм Ду15

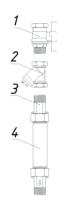
| N° | Наименование                                    | Кол-во | Размер |
|----|-------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой РОСТерм «бабочка»         |        |        |
| 2  | Фильтр косой 1/2"                               |        |        |
| 3  | Ниппель 1/2"                                    | 1 шт.  | 1/2"   |
| 4  | Регулятор давления 1/2" Heizen 304              | ТШі.   | 1/2    |
| 5  | Комплект накидных гаек 1/2" с обратным клапаном |        |        |
| 6  | Проставка вместо тепловодосчетчика 1/2"         |        |        |




## Водомерный узел РОСТерм Ду15 с отводом под УВП и счетчиком в комплекте

| N° | Наименование                            | Кол-во | Размер |
|----|-----------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой РОСТерм «бабочка» | 1 шт.  |        |
| 2  | Фильтр косой 1/2"                       | 2      |        |
| 3  | Ниппель 1/2"                            | 2 шт.  |        |
| 4  | Регулятор давления 1/2" Heizen 304      | 1 шт.  | 1/2"   |
| 5  | Комплект накидных гаек 1/2"             |        |        |
| 6  | Водосчетчик Ду 15                       |        |        |
| 7  | Обратный клапан 1/2" Heizen 999L        |        |        |
| 8  | Тройник латунный 1/2"                   |        |        |




## Водомерный узел РОСТерм Ду15 со счетчиком в комплекте

| N° | Наименование                            | Кол-во | Размер |
|----|-----------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой РОСТерм «бабочка» |        |        |
| 2  | Фильтр косой 1/2"                       |        |        |
| 3  | Ниппель 1/2"                            |        |        |
| 4  | Регулятор давления 1/2" Heizen 304      | 1 шт.  | 1/2"   |
| 5  | Комплект накидных гаек 1/2"             |        |        |
| 6  | Водосчетчик Ду 15                       |        |        |
| 7  | Обратный клапан 1/2" Heizen 999L        |        |        |



#### Водомерный узел РОСТерм Ду15 без редуктора давления

| N° | Наименование                                    | Кол-во | Размер |
|----|-------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой РОСТерм «бабочка»         |        |        |
| 2  | Фильтр косой 1/2"                               |        | 4/01   |
| 3  | Комплект накидных гаек 1/2" с обратным клапаном | 1 шт.  | 1/2"   |
| 4  | Проставка вместо тепло-водосчетчика 1/2"        |        |        |



### 1.5. Коллекторные узлы и водомерные вставки для системы водоснабжения

Квартирные станции РОСТерм устанавливаются на трубопроводах для подключения квартир к системам водяного отопления, холодного и горячего водоснабжения. Квартирные станции РОСТерм применяются для: поддержания постоянного перепада давления на вводе в систему отопления; ограничения предельного расхода теплоносителя через квартиру; управления климатом при установке термоэлектропривода; регулировки давления холодной и горячей воды; учета потребления теплоносителя, холодной и горячей воды (возможна поставка без счетчиков с установкой проставки); организации циркуляции горячего водоснабжения; защиты от гидроударов в системах холодного и горячего водоснабжения; фильтрации теплоносителя и воды; автоматического удаления воздуха в системе отопления.

#### Основные технические характеристики водомерных узлов РОСТерм:

| Наименование показателя                             | Значение                                                                   |  |
|-----------------------------------------------------|----------------------------------------------------------------------------|--|
| Номинальное рабочее давление PN, МПа                | 1,0                                                                        |  |
| Ду подключения                                      | 15, 20                                                                     |  |
| Максимальная температура воды Т <sub>тах</sub> , °С | +80                                                                        |  |
| Максимальная температура воды Tmax, °C              | + 80                                                                       |  |
| Материал основных деталей                           | Латунь марок: ЛС-59, ЛЦ-40C, CW602N, CW617N; сталь нержавеющая             |  |
| Материалы уплотнения неразъемных соединений         | Клеи-герметики анаэробные, лен сантехнический, паста уплотнительная Unipak |  |

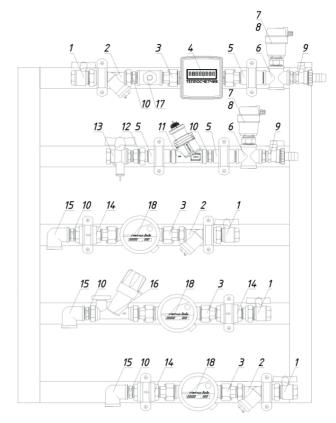
#### Принцип расшифровки артикула:



НWRc — для систем отопления и водоснабжения с рециркуляцией ГВС НW — для систем отопления и водоснабжения

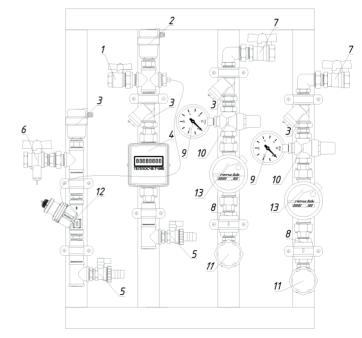
М — вертикальное исполнение
Н — горизонтальное исполнение

MD — приборы учета в комплекте
0 — без приборов учета


15 / 20 — Ду подключения

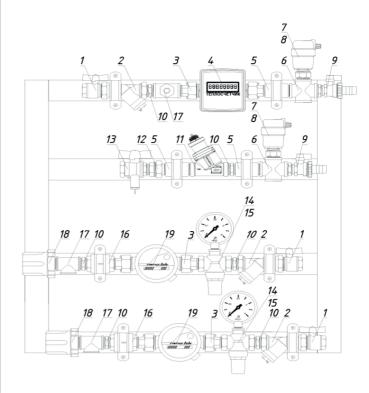
сторона подключения к системе отопления / системе водоснабжения

## 2. ЧЕРТЕЖИ ТИПОВЫХ КВАРТИРНЫХ СТАНЦИЙ РОСТЕРМ


#### Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС HWRc-H-LR-15-MD

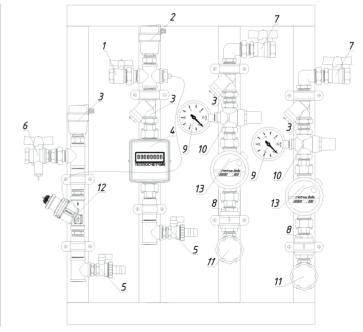
| N° | Наименование                                                                              | Кол-во | Размер |
|----|-------------------------------------------------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой со сгоном РОСТерм «бабочка»                                         | 4 шт   |        |
| 2  | Фильтр косой 1/2"                                                                         | 3 шт.  | 1/2"   |
| 3  | Комплект накидных гаек 1/2"                                                               | 4 шт.  |        |
| 4  | Теплосчетчик Ду15, Q <sub>ном</sub> = 0,6, RS485                                          | 1 шт.  | Ду 15  |
| 5  | Удлинитель 1/2" 30 мм                                                                     | 3 шт.  |        |
| 6  | Крестовина 1/2"                                                                           |        |        |
| 7  | Автоматический воздухоотводчик 1/2"                                                       | 2 шт.  |        |
| 8  | Отсечной клапан 1/2"                                                                      | 2 Ш1.  |        |
| 9  | 1/2" В-Н кран дренажный                                                                   |        |        |
| 10 | Ниппель 1/2"                                                                              | 5 шт.  |        |
| 11 | Комбинированный регулятор перепада давления 1/2"<br>с возможностью установки сервопривода |        | 1/2"   |
| 12 | Американка прямая 1/2"                                                                    | 1 шт.  |        |
| 13 | 1/2" кран шаровой РОСТерм «бабочка» для<br>подключения термодатчика В-Н                   |        |        |
| 14 | Клапан обратный                                                                           | 3 шт.  |        |
| 15 | Угольник 1/2"                                                                             | 3 Ш1.  |        |
| 16 | Циркуляционный вентиль для систем ГВС HEIZEN Valmix 1/2"                                  | 1      |        |
| 17 | Тройник 1/2"                                                                              | 1 шт.  |        |
| 18 | Водосчетчик Ду 15, Q <sub>ном</sub> = 1,5                                                 | 3 шт.  | Ду 15  |
| 19 | Рама монтажная                                                                            | 1 шт.  | -      |




### Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС HWRc-V-LR-15-MD

| N° | Наименование                                                                                                  | Кол-во | Размер |
|----|---------------------------------------------------------------------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой со сгоном РОСТерм «бабочка»                                                             | 1 шт.  |        |
| 2  | Автоматический воздухоотводчик с отсечным клапаном                                                            | 2 шт.  | 1/2"   |
| 3  | Фильтр косой 1/2"                                                                                             | 3 шт.  |        |
| 4  | Теплосчетчик Ду15, Q <sub>ном</sub> = 0,6, RS485                                                              | 1 шт.  | Ду 15  |
| 5  | 1/2" В-Н кран шаровой РОСТерм «бабочка» дренажный                                                             | 2 шт.  |        |
| 6  | 1/2" В-Н кран шаровой РОСТерм «бабочка»<br>для подключения термодатчика                                       | 1 шт.  |        |
| 7  | 1/2" В-В кран шаровой РОСТерм «бабочка»                                                                       | 3 шт.  |        |
| 8  | Клапан обратный пружинный 1/2"                                                                                | 3 Ш1.  | 1/2"   |
| 9  | Циркуляционный вентиль для систем ГВС 1/2"                                                                    |        |        |
| 10 | Комбинированный балансировочный клапан-регулятор перепада давления 1/2" с возможностью установки сервопривода | 1 шт.  |        |
| 11 | Водосчетчик Ду 15, Q <sub>ном</sub> = 1,5                                                                     | 3 шт.  | Ду 15  |
| 12 | Рама монтажная 11                                                                                             | 1 шт.  | 1/2"   |




### Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения HW-H-LR-15-MD

| N° | Наименование                                                                              | Кол-во | Размер |
|----|-------------------------------------------------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровый со сгоном РОСТерм «бабочка»                                         |        |        |
| 2  | Фильтр косой 1/2"                                                                         | 3 шт.  | 1/2"   |
| 3  | Комплект накидных гаек 1/2"                                                               |        |        |
| 4  | Теплосчетчик Ду15, Q <sub>ном</sub> = 0,6, RS485                                          | 1 шт.  | Ду 15  |
| 5  | Удлинитель 1/2" 30 мм                                                                     | 3 шт.  |        |
| 6  | Крестовина 1/2"                                                                           |        |        |
| 7  | Автоматический воздухоотводчик 1/2"                                                       | 2 шт.  |        |
| 8  | Отсечной клапан 1/2"                                                                      | 2 Ш1.  |        |
| 9  | 1/2" В-Н кран дренажный                                                                   |        |        |
| 10 | Ниппель 1/2"                                                                              | 6 шт.  |        |
| 11 | Комбинированный регулятор перепада давления 1/2"<br>с возможностью установки сервопривода |        | 4/2"   |
| 12 | Американка прямая 1/2"                                                                    | 1 шт.  | 1/2"   |
| 13 | 1/2" кран шаровой РОСТерм «бабочка» для<br>подключения термодатчика В-Н                   |        |        |
| 14 | Регулятор давления 1/2" поршневой                                                         |        |        |
| 15 | Манометр радиальный 1/4" 0-6 бар                                                          | 2 шт.  |        |
| 16 | Клапан обратный                                                                           |        |        |
| 17 | Тройник 1/2"                                                                              | 3 шт.  |        |
| 18 | Амортизатор гидравлического удара                                                         | 2      |        |
| 19 | Водосчетчик Ду 15, Q <sub>ном</sub> = 1,5                                                 | 2 шт.  | Ду 15  |
| 20 | Рама монтажная                                                                            | 1 шт.  | -      |



## Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения HW-V-LR-15-MD

| N° | Наименование                                                                                                        | Кол-во | Размер |
|----|---------------------------------------------------------------------------------------------------------------------|--------|--------|
| 1  | 1/2" В-Н кран шаровой со сгоном РОСТерм «бабочка»                                                                   | 1 шт.  |        |
| 2  | Автоматический воздухоотводчик с отсечным клапаном                                                                  | 2 шт.  | 1/2"   |
| 3  | Фильтр косой 1/2"                                                                                                   | 3 шт.  |        |
| 4  | Теплосчетчик Ду15, Q <sub>ном</sub> = 0,6, RS485                                                                    | 1 шт.  | Ду 15  |
| 5  | 1/2" В-Н кран шаровой РОСТерм «бабочка» дренажный                                                                   | 2 шт.  | 1/2"   |
| 6  | 1/2" В-Н кран шаровой РОСТерм «бабочка» для подключения<br>термодатчика                                             | 1 шт.  |        |
| 7  | 1/2" В-В кран шаровой РОСТерм «бабочка»                                                                             |        |        |
| 8  | Клапан обратный                                                                                                     |        |        |
| 9  | Манометр радиальный 1/4" 0-6 бар                                                                                    | 2 шт.  | 1/2"   |
| 10 | Регулятор давления 1/2" поршневой                                                                                   |        | ,,_    |
| 11 | Амортизатор гидравлического удара                                                                                   |        |        |
| 12 | Комбинированный балансировочный клапан-регулятор<br>перепада давления 1/2" с возможностью установки<br>сервопривода | 1 шт.  |        |
| 13 | Водосчетчик Ду 15, Q <sub>ном</sub> = 1,5                                                                           | 2 шт.  | Ду 15  |
| 14 | Рама монтажная                                                                                                      | 1 шт.  | 1/2"   |



## 3. НОМЕНКЛАТУРА

| Наименование                                                                                                                                                                                                                | Артикул         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения                      | HWRc-V-LR-15-MD |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения без приборов учета      | HWRc-V-LR-15-0  |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения                      | HWRc-V-RL-15-MD |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения без приборов учета   | HWRc-V-RL-15-0  |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения                                             | HW-V-LR-15-MD   |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения без приборов учета                          | HW-V-LR-15-0    |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения                                             | HW-V-RL-15-MD   |
| Квартирная станция РОСТерм в вертикальном исполнении для систем отопления и водоснабжения с правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения без приборов учета                          | HW-V-RL-15-0    |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения                    | HWRc-H-LR-15-MD |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения без приборов учета | HWRc-H-LR-15-0  |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения                    | HWRc-H-RL-15-MD |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с рециркуляцией ГВС с<br>правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения без приборов учета | HWRc-H-RL-15-0  |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения                                           | HW-H-LR-15-MD   |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с левым подключением к стоякам отопления, правым подключением к стоякам водоснабжения без приборов учета                        | HW-H-LR-15-0    |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения                                           | HW-H-RL-15-MD   |
| Квартирная станция РОСТерм в горизонтальном исполнении для систем отопления и водоснабжения с правым подключением к стоякам отопления, левым подключением к стоякам водоснабжения без приборов учета                        | HW-H-RL-15-0    |

## О КОМПАНИИ РОСТЕРМ

РОСТерм — крупнейший игрок на рынке инженерного обеспечения жилого, коммерческого и государственного строительства России. История компании началась в 2005 году с целью продвижения материалов и решений в области внутренних инженерных систем, максимально адаптированных к сложным условиям эксплуатации российских систем водоснабжения, отопления и канализации. Основной актив компании с 2014 года — это производственный комплекс в Санкт-Петербурге по переработке полимерных материалов.

Сегодня РОСТерм — крупнейший завод в Северо-Западном округе по производству труб, фитингов и систем для прокладки кабеля из полимерных материалов PE-Xa / PE-Xb / PPSU / PVDF / PP-R / PE-RT / PVC / LDPE и уникальное современное производство, выпускающее аксиальную систему PE-Xa (трубы PE-Xa, фитинги PPSU/PVDF и гофрированные кожухи) на одной площадке.

Помимо переработки полимерных материалов, РОСТерм развивает направление по производству и сборке коллекторных узлов для отопления и водоснабжения.

## **Продукция представлена более чем в 75 городах России.**



#### О нас в цифрах: —

## Более 3200 реализованных проектов в новом жилищном строительстве

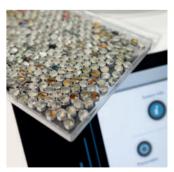
18 экструзионных линий и 15 термопластавтоматов

- > 100 млн метров труб в год
- > 50 млн фитингов в год
- $25~000~\text{м}^2$  площадь складов
- 10 000 м<sup>2</sup> площадь завода





#### **ЛАБОРАТОРИЯ**


РОСТерм имеет собственную аттестованную лабораторию, оснащенную новейшим и уникальным оборудованием. Испытательная лаборатория аккредитована в национальной системе оценки соответствия «РосОснова», регистрационный №РОСС RU.32368.04HCOO.

#### В сферу деятельности испытательной лаборатории входит:

- входной контроль (контроль сырья и комплектующих изделий);
- операционный контроль (контроль на этапе производства);
- приемо-сдаточный контроль (приемка партий изделий);
- научно-исследовательская деятельность.

Лаборатория РОСТерм обеспечивает высокое качество, своевременность испытаний выпускаемого оборудования и достоверность результатов.





## С гордостью производим в России!

- 🞗 г. Санкт-Петербург, Волхонское шоссе, д. 112
- + 7 (812) 425 39 30
- info@rostherm.ru



rostherm.ru

